Amorphous proper classes in MKWhat sort of structure can amorphous sets support?Splitting infinite setsFor models of ZF, if for some $A$ we have $L[A] = L$, what can we deduce about $A$?What sort of structure can amorphous sets support?Some questions about Ackermann set theoryHartogs number and the three power setsCan $mathbbR$ be partitioned into dedekind-finite sets?How many Dedekind-finite sets can $mathbbR$ be partitioned into?Can ZFC be interpreted in a set theory having finitely many ranks?An axiom for collecting proper classesDo choice principles in all generic extensions imply AC in $V$?

Amorphous proper classes in MK


What sort of structure can amorphous sets support?Splitting infinite setsFor models of ZF, if for some $A$ we have $L[A] = L$, what can we deduce about $A$?What sort of structure can amorphous sets support?Some questions about Ackermann set theoryHartogs number and the three power setsCan $mathbbR$ be partitioned into dedekind-finite sets?How many Dedekind-finite sets can $mathbbR$ be partitioned into?Can ZFC be interpreted in a set theory having finitely many ranks?An axiom for collecting proper classesDo choice principles in all generic extensions imply AC in $V$?













4












$begingroup$


Working in $ZFC$ every cardinal is either finite or in bijection with a proper subset of itself (Dedekind infinite). Without Choice it is consistent that there are infinite sets which can't be partitioned into two infinite subsets (amorphous sets), so the above statement no longer holds since a bijection to a proper subset implies a partition into two disjoint infinite subsets as proven on the wiki -- all of this is discussed in the question and answers here much more succinctly.




Is it consistent in $MK$ without Global Choice that there are amorphous proper classes, meaning proper classes which can't be partitioned into two proper class sized subclasses?




Directly generalizing the argument given on the wiki article for amorphous sets seems to require a notion of transfinite function composition which can be defined in good categorical generality using colimits, but it is not immediately apparent how to generalize the recursive definition of the $S_i$'s for limit ordinal $i$ since the given definitions depend on immediate predecessor steps.










share|cite|improve this question











$endgroup$
















    4












    $begingroup$


    Working in $ZFC$ every cardinal is either finite or in bijection with a proper subset of itself (Dedekind infinite). Without Choice it is consistent that there are infinite sets which can't be partitioned into two infinite subsets (amorphous sets), so the above statement no longer holds since a bijection to a proper subset implies a partition into two disjoint infinite subsets as proven on the wiki -- all of this is discussed in the question and answers here much more succinctly.




    Is it consistent in $MK$ without Global Choice that there are amorphous proper classes, meaning proper classes which can't be partitioned into two proper class sized subclasses?




    Directly generalizing the argument given on the wiki article for amorphous sets seems to require a notion of transfinite function composition which can be defined in good categorical generality using colimits, but it is not immediately apparent how to generalize the recursive definition of the $S_i$'s for limit ordinal $i$ since the given definitions depend on immediate predecessor steps.










    share|cite|improve this question











    $endgroup$














      4












      4








      4





      $begingroup$


      Working in $ZFC$ every cardinal is either finite or in bijection with a proper subset of itself (Dedekind infinite). Without Choice it is consistent that there are infinite sets which can't be partitioned into two infinite subsets (amorphous sets), so the above statement no longer holds since a bijection to a proper subset implies a partition into two disjoint infinite subsets as proven on the wiki -- all of this is discussed in the question and answers here much more succinctly.




      Is it consistent in $MK$ without Global Choice that there are amorphous proper classes, meaning proper classes which can't be partitioned into two proper class sized subclasses?




      Directly generalizing the argument given on the wiki article for amorphous sets seems to require a notion of transfinite function composition which can be defined in good categorical generality using colimits, but it is not immediately apparent how to generalize the recursive definition of the $S_i$'s for limit ordinal $i$ since the given definitions depend on immediate predecessor steps.










      share|cite|improve this question











      $endgroup$




      Working in $ZFC$ every cardinal is either finite or in bijection with a proper subset of itself (Dedekind infinite). Without Choice it is consistent that there are infinite sets which can't be partitioned into two infinite subsets (amorphous sets), so the above statement no longer holds since a bijection to a proper subset implies a partition into two disjoint infinite subsets as proven on the wiki -- all of this is discussed in the question and answers here much more succinctly.




      Is it consistent in $MK$ without Global Choice that there are amorphous proper classes, meaning proper classes which can't be partitioned into two proper class sized subclasses?




      Directly generalizing the argument given on the wiki article for amorphous sets seems to require a notion of transfinite function composition which can be defined in good categorical generality using colimits, but it is not immediately apparent how to generalize the recursive definition of the $S_i$'s for limit ordinal $i$ since the given definitions depend on immediate predecessor steps.







      set-theory lo.logic axiom-of-choice






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 51 mins ago









      David Roberts

      17.5k463177




      17.5k463177










      asked 3 hours ago









      Alec RheaAlec Rhea

      1,3331819




      1,3331819




















          1 Answer
          1






          active

          oldest

          votes


















          5












          $begingroup$

          Unless I'm missing something, the answer is no: we have a surjection $s$ from a given proper class to the class of ordinals - sending each element to its rank and then "collapsing" appropriately - and this lets us partition the original class into two proper classes, for example $s^-1(limits)$ versus $s^-1(successors)$.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Very nice, you haven't missed anything -- if I create a moving target and ask about $MK-Foundation$ is the answer still trivially no?
            $endgroup$
            – Alec Rhea
            3 hours ago






          • 1




            $begingroup$
            @Alec: In that case the answer is positive. Just do Fraenkel's model over a proper class of atoms.
            $endgroup$
            – Asaf Karagila
            3 hours ago






          • 1




            $begingroup$
            @Alec: That's the OG model for amorphous sets. Just remember that ZFA (or ZFU) is equivalent to ZF-Foundation with Quine atoms for the atoms.
            $endgroup$
            – Asaf Karagila
            3 hours ago






          • 1




            $begingroup$
            Tsk tsk tsk. TSK. TSK. TSK.
            $endgroup$
            – Asaf Karagila
            1 hour ago






          • 3




            $begingroup$
            @Noah Asaf is calling you uncool for not knowing.
            $endgroup$
            – David Roberts
            49 mins ago











          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "504"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f325796%2famorphous-proper-classes-in-mk%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          5












          $begingroup$

          Unless I'm missing something, the answer is no: we have a surjection $s$ from a given proper class to the class of ordinals - sending each element to its rank and then "collapsing" appropriately - and this lets us partition the original class into two proper classes, for example $s^-1(limits)$ versus $s^-1(successors)$.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Very nice, you haven't missed anything -- if I create a moving target and ask about $MK-Foundation$ is the answer still trivially no?
            $endgroup$
            – Alec Rhea
            3 hours ago






          • 1




            $begingroup$
            @Alec: In that case the answer is positive. Just do Fraenkel's model over a proper class of atoms.
            $endgroup$
            – Asaf Karagila
            3 hours ago






          • 1




            $begingroup$
            @Alec: That's the OG model for amorphous sets. Just remember that ZFA (or ZFU) is equivalent to ZF-Foundation with Quine atoms for the atoms.
            $endgroup$
            – Asaf Karagila
            3 hours ago






          • 1




            $begingroup$
            Tsk tsk tsk. TSK. TSK. TSK.
            $endgroup$
            – Asaf Karagila
            1 hour ago






          • 3




            $begingroup$
            @Noah Asaf is calling you uncool for not knowing.
            $endgroup$
            – David Roberts
            49 mins ago
















          5












          $begingroup$

          Unless I'm missing something, the answer is no: we have a surjection $s$ from a given proper class to the class of ordinals - sending each element to its rank and then "collapsing" appropriately - and this lets us partition the original class into two proper classes, for example $s^-1(limits)$ versus $s^-1(successors)$.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Very nice, you haven't missed anything -- if I create a moving target and ask about $MK-Foundation$ is the answer still trivially no?
            $endgroup$
            – Alec Rhea
            3 hours ago






          • 1




            $begingroup$
            @Alec: In that case the answer is positive. Just do Fraenkel's model over a proper class of atoms.
            $endgroup$
            – Asaf Karagila
            3 hours ago






          • 1




            $begingroup$
            @Alec: That's the OG model for amorphous sets. Just remember that ZFA (or ZFU) is equivalent to ZF-Foundation with Quine atoms for the atoms.
            $endgroup$
            – Asaf Karagila
            3 hours ago






          • 1




            $begingroup$
            Tsk tsk tsk. TSK. TSK. TSK.
            $endgroup$
            – Asaf Karagila
            1 hour ago






          • 3




            $begingroup$
            @Noah Asaf is calling you uncool for not knowing.
            $endgroup$
            – David Roberts
            49 mins ago














          5












          5








          5





          $begingroup$

          Unless I'm missing something, the answer is no: we have a surjection $s$ from a given proper class to the class of ordinals - sending each element to its rank and then "collapsing" appropriately - and this lets us partition the original class into two proper classes, for example $s^-1(limits)$ versus $s^-1(successors)$.






          share|cite|improve this answer









          $endgroup$



          Unless I'm missing something, the answer is no: we have a surjection $s$ from a given proper class to the class of ordinals - sending each element to its rank and then "collapsing" appropriately - and this lets us partition the original class into two proper classes, for example $s^-1(limits)$ versus $s^-1(successors)$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 3 hours ago









          Noah SchweberNoah Schweber

          19.5k349146




          19.5k349146











          • $begingroup$
            Very nice, you haven't missed anything -- if I create a moving target and ask about $MK-Foundation$ is the answer still trivially no?
            $endgroup$
            – Alec Rhea
            3 hours ago






          • 1




            $begingroup$
            @Alec: In that case the answer is positive. Just do Fraenkel's model over a proper class of atoms.
            $endgroup$
            – Asaf Karagila
            3 hours ago






          • 1




            $begingroup$
            @Alec: That's the OG model for amorphous sets. Just remember that ZFA (or ZFU) is equivalent to ZF-Foundation with Quine atoms for the atoms.
            $endgroup$
            – Asaf Karagila
            3 hours ago






          • 1




            $begingroup$
            Tsk tsk tsk. TSK. TSK. TSK.
            $endgroup$
            – Asaf Karagila
            1 hour ago






          • 3




            $begingroup$
            @Noah Asaf is calling you uncool for not knowing.
            $endgroup$
            – David Roberts
            49 mins ago

















          • $begingroup$
            Very nice, you haven't missed anything -- if I create a moving target and ask about $MK-Foundation$ is the answer still trivially no?
            $endgroup$
            – Alec Rhea
            3 hours ago






          • 1




            $begingroup$
            @Alec: In that case the answer is positive. Just do Fraenkel's model over a proper class of atoms.
            $endgroup$
            – Asaf Karagila
            3 hours ago






          • 1




            $begingroup$
            @Alec: That's the OG model for amorphous sets. Just remember that ZFA (or ZFU) is equivalent to ZF-Foundation with Quine atoms for the atoms.
            $endgroup$
            – Asaf Karagila
            3 hours ago






          • 1




            $begingroup$
            Tsk tsk tsk. TSK. TSK. TSK.
            $endgroup$
            – Asaf Karagila
            1 hour ago






          • 3




            $begingroup$
            @Noah Asaf is calling you uncool for not knowing.
            $endgroup$
            – David Roberts
            49 mins ago
















          $begingroup$
          Very nice, you haven't missed anything -- if I create a moving target and ask about $MK-Foundation$ is the answer still trivially no?
          $endgroup$
          – Alec Rhea
          3 hours ago




          $begingroup$
          Very nice, you haven't missed anything -- if I create a moving target and ask about $MK-Foundation$ is the answer still trivially no?
          $endgroup$
          – Alec Rhea
          3 hours ago




          1




          1




          $begingroup$
          @Alec: In that case the answer is positive. Just do Fraenkel's model over a proper class of atoms.
          $endgroup$
          – Asaf Karagila
          3 hours ago




          $begingroup$
          @Alec: In that case the answer is positive. Just do Fraenkel's model over a proper class of atoms.
          $endgroup$
          – Asaf Karagila
          3 hours ago




          1




          1




          $begingroup$
          @Alec: That's the OG model for amorphous sets. Just remember that ZFA (or ZFU) is equivalent to ZF-Foundation with Quine atoms for the atoms.
          $endgroup$
          – Asaf Karagila
          3 hours ago




          $begingroup$
          @Alec: That's the OG model for amorphous sets. Just remember that ZFA (or ZFU) is equivalent to ZF-Foundation with Quine atoms for the atoms.
          $endgroup$
          – Asaf Karagila
          3 hours ago




          1




          1




          $begingroup$
          Tsk tsk tsk. TSK. TSK. TSK.
          $endgroup$
          – Asaf Karagila
          1 hour ago




          $begingroup$
          Tsk tsk tsk. TSK. TSK. TSK.
          $endgroup$
          – Asaf Karagila
          1 hour ago




          3




          3




          $begingroup$
          @Noah Asaf is calling you uncool for not knowing.
          $endgroup$
          – David Roberts
          49 mins ago





          $begingroup$
          @Noah Asaf is calling you uncool for not knowing.
          $endgroup$
          – David Roberts
          49 mins ago


















          draft saved

          draft discarded
















































          Thanks for contributing an answer to MathOverflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f325796%2famorphous-proper-classes-in-mk%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Are there any AGPL-style licences that require source code modifications to be public? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Force derivative works to be publicAre there any GPL like licenses for Apple App Store?Do you violate the GPL if you provide source code that cannot be compiled?GPL - is it distribution to use libraries in an appliance loaned to customers?Distributing App for free which uses GPL'ed codeModifications of server software under GPL, with web/CLI interfaceDoes using an AGPLv3-licensed library prevent me from dual-licensing my own source code?Can I publish only select code under GPLv3 from a private project?Is there published precedent regarding the scope of covered work that uses AGPL software?If MIT licensed code links to GPL licensed code what should be the license of the resulting binary program?If I use a public API endpoint that has its source code licensed under AGPL in my app, do I need to disclose my source?

          2013 GY136 Descoberta | Órbita | Referências Menu de navegação«List Of Centaurs and Scattered-Disk Objects»«List of Known Trans-Neptunian Objects»

          Mortes em março de 2019 Referências Menu de navegação«Zhores Alferov, Nobel de Física bielorrusso, morre aos 88 anos - Ciência»«Fallece Rafael Torija, o bispo emérito de Ciudad Real»«Peter Hurford dies at 88»«Keith Flint, vocalista do The Prodigy, morre aos 49 anos»«Luke Perry, ator de 'Barrados no baile' e 'Riverdale', morre aos 52 anos»«Former Rangers and Scotland captain Eric Caldow dies, aged 84»«Morreu, aos 61 anos, a antiga lenda do wrestling King Kong Bundy»«Fallece el actor y director teatral Abraham Stavans»«In Memoriam Guillaume Faye»«Sidney Sheinberg, a Force Behind Universal and Spielberg, Is Dead at 84»«Carmine Persico, Colombo Crime Family Boss, Is Dead at 85»«Dirigent Michael Gielen gestorben»«Ciclista tricampeã mundial e prata na Rio 2016 é encontrada morta em casa aos 23 anos»«Pagan Community Notes: Raven Grimassi dies, Indianapolis pop-up event cancelled, Circle Sanctuary announces new podcast, and more!»«Hal Blaine, Wrecking Crew Drummer, Dies at 90»«Morre Coutinho, que editou dupla lendária com Pelé no Santos»«Cantor Demétrius, ídolo da Jovem Guarda, morre em SP»«Ex-presidente do Vasco, Eurico Miranda morre no Rio de Janeiro»«Bronze no Mundial de basquete de 1971, Laís Elena morre aos 76 anos»«Diretor de Corridas da F1, Charlie Whiting morre aos 66 anos às vésperas do GP da Austrália»«Morreu o cardeal Danneels, da Bélgica»«Morreu o cartoonista Augusto Cid»«Morreu a atriz Maria Isabel de Lizandra, de "Vale Tudo" e novelas da Tupi»«WS Merwin, prize-winning poet of nature, dies at 91»«Atriz Márcia Real morre em São Paulo aos 88 anos»«Mauritanie: décès de l'ancien président Mohamed Mahmoud ould Louly»«Morreu Dick Dale, o rei da surf guitar e de "Pulp Fiction"»«Falleció Víctor Genes»«João Carlos Marinho, autor de 'O Gênio do Crime', morre em SP»«Legendary Horror Director and SFX Artist John Carl Buechler Dies at 66»«Morre em Salvador a religiosa Makota Valdina»«مرگ بازیکن‌ سابق نساجی بر اثر سقوط سنگ در مازندران»«Domingos Oliveira morre no Rio»«Morre Airton Ravagniani, ex-São Paulo, Fla, Vasco, Grêmio e Sport - Notícias»«Morre o escritor Flavio Moreira da Costa»«Larry Cohen, Writer-Director of 'It's Alive' and 'Hell Up in Harlem,' Dies at 77»«Scott Walker, experimental singer-songwriter, dead at 76»«Joseph Pilato, Day of the Dead Star and Horror Favorite, Dies at 70»«Sheffield United set to pay tribute to legendary goalkeeper Ted Burgin who has died at 91»«Morre Rafael Henzel, sobrevivente de acidente aéreo da Chapecoense»«Morre Valery Bykovsky, um dos primeiros cosmonautas da União Soviética»«Agnès Varda, cineasta da Nouvelle Vague, morre aos 90 anos»«Agnès Varda, cineasta francesa, morre aos 90 anos»«Tania Mallet, James Bond Actress and Helen Mirren's Cousin, Dies at 77»e