Two monoidal structures and copoweringDefinition of enriched caterories or internal homs without using monoidal categories.Unitalization internal to monoidal categoriesCorrespondence between operads and monads requires tensor distribute over coproduct?Making additive envelopes of monoidal categories monoidalEnriching categories and equivalencesSeeking more information regarding the “rigoidal category” of $mathbbN$-graded setsIs there a monoidal category that coclassifies enriched category structures for a given set?Biased vs unbiased lax monoidal categoriesDefinitions of enriched monoidal categoryEnrichment of lax monoidal functors between closed monoidal categories

Two monoidal structures and copowering


Definition of enriched caterories or internal homs without using monoidal categories.Unitalization internal to monoidal categoriesCorrespondence between operads and monads requires tensor distribute over coproduct?Making additive envelopes of monoidal categories monoidalEnriching categories and equivalencesSeeking more information regarding the “rigoidal category” of $mathbbN$-graded setsIs there a monoidal category that coclassifies enriched category structures for a given set?Biased vs unbiased lax monoidal categoriesDefinitions of enriched monoidal categoryEnrichment of lax monoidal functors between closed monoidal categories













5












$begingroup$


Let $(mathbfM,otimes,1)$ be a closed monoidal category and $(mathbfC,oplus,0)$ an $mathbfM$-enriched monoidal category. Furthermore, assume that we have a copowering $odot:mathbfMtimesmathbfCto mathbfC$. Is there a canonical morphism
$$(Aodot X)oplus (Bodot Y)to (Aotimes B)odot (Xoplus Y)$$
The question came to my mind because in order to spell out the axioms (in one of the definitions) for an algebra over an operad $mathcalO$ in the above setting, we need for the associativity axiom a morphism
$$mathcalO(r)odot left(bigoplus_i (mathcalO(k_i)odot X^oplus k_i)right)toleft(mathcalO(r)otimesbigotimes_imathcalO(k_i)right)odot left(bigoplus_iX^oplus k_iright)$$
Or the other direction. If $mathbfM$ is considered to be enriched over itself, everything is fine because then $otimes=odot=oplus$, but in general?










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    Okay, it seems to be equivalent to the formulation: “The copowering is a monoidal functor with respect to the component-wise monoidal structure.”
    $endgroup$
    – FKranhold
    1 hour ago















5












$begingroup$


Let $(mathbfM,otimes,1)$ be a closed monoidal category and $(mathbfC,oplus,0)$ an $mathbfM$-enriched monoidal category. Furthermore, assume that we have a copowering $odot:mathbfMtimesmathbfCto mathbfC$. Is there a canonical morphism
$$(Aodot X)oplus (Bodot Y)to (Aotimes B)odot (Xoplus Y)$$
The question came to my mind because in order to spell out the axioms (in one of the definitions) for an algebra over an operad $mathcalO$ in the above setting, we need for the associativity axiom a morphism
$$mathcalO(r)odot left(bigoplus_i (mathcalO(k_i)odot X^oplus k_i)right)toleft(mathcalO(r)otimesbigotimes_imathcalO(k_i)right)odot left(bigoplus_iX^oplus k_iright)$$
Or the other direction. If $mathbfM$ is considered to be enriched over itself, everything is fine because then $otimes=odot=oplus$, but in general?










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    Okay, it seems to be equivalent to the formulation: “The copowering is a monoidal functor with respect to the component-wise monoidal structure.”
    $endgroup$
    – FKranhold
    1 hour ago













5












5








5





$begingroup$


Let $(mathbfM,otimes,1)$ be a closed monoidal category and $(mathbfC,oplus,0)$ an $mathbfM$-enriched monoidal category. Furthermore, assume that we have a copowering $odot:mathbfMtimesmathbfCto mathbfC$. Is there a canonical morphism
$$(Aodot X)oplus (Bodot Y)to (Aotimes B)odot (Xoplus Y)$$
The question came to my mind because in order to spell out the axioms (in one of the definitions) for an algebra over an operad $mathcalO$ in the above setting, we need for the associativity axiom a morphism
$$mathcalO(r)odot left(bigoplus_i (mathcalO(k_i)odot X^oplus k_i)right)toleft(mathcalO(r)otimesbigotimes_imathcalO(k_i)right)odot left(bigoplus_iX^oplus k_iright)$$
Or the other direction. If $mathbfM$ is considered to be enriched over itself, everything is fine because then $otimes=odot=oplus$, but in general?










share|cite|improve this question









$endgroup$




Let $(mathbfM,otimes,1)$ be a closed monoidal category and $(mathbfC,oplus,0)$ an $mathbfM$-enriched monoidal category. Furthermore, assume that we have a copowering $odot:mathbfMtimesmathbfCto mathbfC$. Is there a canonical morphism
$$(Aodot X)oplus (Bodot Y)to (Aotimes B)odot (Xoplus Y)$$
The question came to my mind because in order to spell out the axioms (in one of the definitions) for an algebra over an operad $mathcalO$ in the above setting, we need for the associativity axiom a morphism
$$mathcalO(r)odot left(bigoplus_i (mathcalO(k_i)odot X^oplus k_i)right)toleft(mathcalO(r)otimesbigotimes_imathcalO(k_i)right)odot left(bigoplus_iX^oplus k_iright)$$
Or the other direction. If $mathbfM$ is considered to be enriched over itself, everything is fine because then $otimes=odot=oplus$, but in general?







ct.category-theory monoidal-categories operads enriched-category-theory






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 1 hour ago









FKranholdFKranhold

1996




1996







  • 1




    $begingroup$
    Okay, it seems to be equivalent to the formulation: “The copowering is a monoidal functor with respect to the component-wise monoidal structure.”
    $endgroup$
    – FKranhold
    1 hour ago












  • 1




    $begingroup$
    Okay, it seems to be equivalent to the formulation: “The copowering is a monoidal functor with respect to the component-wise monoidal structure.”
    $endgroup$
    – FKranhold
    1 hour ago







1




1




$begingroup$
Okay, it seems to be equivalent to the formulation: “The copowering is a monoidal functor with respect to the component-wise monoidal structure.”
$endgroup$
– FKranhold
1 hour ago




$begingroup$
Okay, it seems to be equivalent to the formulation: “The copowering is a monoidal functor with respect to the component-wise monoidal structure.”
$endgroup$
– FKranhold
1 hour ago










1 Answer
1






active

oldest

votes


















5












$begingroup$

No. Consider the case where $(M,otimes,1)$ is $(mathbfSet,times,1)$, so the enrichment is vacuous, and $(C,oplus,0)$ is $(mathbfSet,+,0)$, with copowering $odot$ given by $times$.



Then the morphism you ask for would give a map
$$(A times X) + (B times Y) longrightarrow (A times B) times (X + Y) $$



which doesn’t exist in general: consider $A = X = Y = 1$, $B = 0$.




However, there is a natural map in the other direction. There are natural maps $A to C(X,A odot X)$ and $B to C(Y,B odot Y)$, the structure maps of the copowering. Also, the definition of enriched monoidal category includes the condition that $oplus$ is an enriched bifunctor, so there’s a general map $C(X,X') otimes C(Y,Y') to C(X oplus Y, X' oplus Y')$. Putting these together, we get a map
$$ A otimes B longrightarrow C(X, A odot X) otimes C(Y, B odot Y) longrightarrow C(X oplus Y, (A odot X) oplus (B odot Y)) $$
which corresponds under copowering to a map $(A otimes B) odot (X oplus Y) to (A odot X) oplus (B odot Y)$.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Good counterexample! Then maybe there is a canonical morphism in the other direction? Otherwise, I have the above problem with the associativity axiom for algebras over operads, as long as we do not assume that the copowering is a monoidal functor …
    $endgroup$
    – FKranhold
    1 hour ago










  • $begingroup$
    @FKranhold: Yes, there is a natural map in the converse direction — I’ll add the description of that in my answer.
    $endgroup$
    – Peter LeFanu Lumsdaine
    15 mins ago










Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "504"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f326520%2ftwo-monoidal-structures-and-copowering%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









5












$begingroup$

No. Consider the case where $(M,otimes,1)$ is $(mathbfSet,times,1)$, so the enrichment is vacuous, and $(C,oplus,0)$ is $(mathbfSet,+,0)$, with copowering $odot$ given by $times$.



Then the morphism you ask for would give a map
$$(A times X) + (B times Y) longrightarrow (A times B) times (X + Y) $$



which doesn’t exist in general: consider $A = X = Y = 1$, $B = 0$.




However, there is a natural map in the other direction. There are natural maps $A to C(X,A odot X)$ and $B to C(Y,B odot Y)$, the structure maps of the copowering. Also, the definition of enriched monoidal category includes the condition that $oplus$ is an enriched bifunctor, so there’s a general map $C(X,X') otimes C(Y,Y') to C(X oplus Y, X' oplus Y')$. Putting these together, we get a map
$$ A otimes B longrightarrow C(X, A odot X) otimes C(Y, B odot Y) longrightarrow C(X oplus Y, (A odot X) oplus (B odot Y)) $$
which corresponds under copowering to a map $(A otimes B) odot (X oplus Y) to (A odot X) oplus (B odot Y)$.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Good counterexample! Then maybe there is a canonical morphism in the other direction? Otherwise, I have the above problem with the associativity axiom for algebras over operads, as long as we do not assume that the copowering is a monoidal functor …
    $endgroup$
    – FKranhold
    1 hour ago










  • $begingroup$
    @FKranhold: Yes, there is a natural map in the converse direction — I’ll add the description of that in my answer.
    $endgroup$
    – Peter LeFanu Lumsdaine
    15 mins ago















5












$begingroup$

No. Consider the case where $(M,otimes,1)$ is $(mathbfSet,times,1)$, so the enrichment is vacuous, and $(C,oplus,0)$ is $(mathbfSet,+,0)$, with copowering $odot$ given by $times$.



Then the morphism you ask for would give a map
$$(A times X) + (B times Y) longrightarrow (A times B) times (X + Y) $$



which doesn’t exist in general: consider $A = X = Y = 1$, $B = 0$.




However, there is a natural map in the other direction. There are natural maps $A to C(X,A odot X)$ and $B to C(Y,B odot Y)$, the structure maps of the copowering. Also, the definition of enriched monoidal category includes the condition that $oplus$ is an enriched bifunctor, so there’s a general map $C(X,X') otimes C(Y,Y') to C(X oplus Y, X' oplus Y')$. Putting these together, we get a map
$$ A otimes B longrightarrow C(X, A odot X) otimes C(Y, B odot Y) longrightarrow C(X oplus Y, (A odot X) oplus (B odot Y)) $$
which corresponds under copowering to a map $(A otimes B) odot (X oplus Y) to (A odot X) oplus (B odot Y)$.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Good counterexample! Then maybe there is a canonical morphism in the other direction? Otherwise, I have the above problem with the associativity axiom for algebras over operads, as long as we do not assume that the copowering is a monoidal functor …
    $endgroup$
    – FKranhold
    1 hour ago










  • $begingroup$
    @FKranhold: Yes, there is a natural map in the converse direction — I’ll add the description of that in my answer.
    $endgroup$
    – Peter LeFanu Lumsdaine
    15 mins ago













5












5








5





$begingroup$

No. Consider the case where $(M,otimes,1)$ is $(mathbfSet,times,1)$, so the enrichment is vacuous, and $(C,oplus,0)$ is $(mathbfSet,+,0)$, with copowering $odot$ given by $times$.



Then the morphism you ask for would give a map
$$(A times X) + (B times Y) longrightarrow (A times B) times (X + Y) $$



which doesn’t exist in general: consider $A = X = Y = 1$, $B = 0$.




However, there is a natural map in the other direction. There are natural maps $A to C(X,A odot X)$ and $B to C(Y,B odot Y)$, the structure maps of the copowering. Also, the definition of enriched monoidal category includes the condition that $oplus$ is an enriched bifunctor, so there’s a general map $C(X,X') otimes C(Y,Y') to C(X oplus Y, X' oplus Y')$. Putting these together, we get a map
$$ A otimes B longrightarrow C(X, A odot X) otimes C(Y, B odot Y) longrightarrow C(X oplus Y, (A odot X) oplus (B odot Y)) $$
which corresponds under copowering to a map $(A otimes B) odot (X oplus Y) to (A odot X) oplus (B odot Y)$.






share|cite|improve this answer











$endgroup$



No. Consider the case where $(M,otimes,1)$ is $(mathbfSet,times,1)$, so the enrichment is vacuous, and $(C,oplus,0)$ is $(mathbfSet,+,0)$, with copowering $odot$ given by $times$.



Then the morphism you ask for would give a map
$$(A times X) + (B times Y) longrightarrow (A times B) times (X + Y) $$



which doesn’t exist in general: consider $A = X = Y = 1$, $B = 0$.




However, there is a natural map in the other direction. There are natural maps $A to C(X,A odot X)$ and $B to C(Y,B odot Y)$, the structure maps of the copowering. Also, the definition of enriched monoidal category includes the condition that $oplus$ is an enriched bifunctor, so there’s a general map $C(X,X') otimes C(Y,Y') to C(X oplus Y, X' oplus Y')$. Putting these together, we get a map
$$ A otimes B longrightarrow C(X, A odot X) otimes C(Y, B odot Y) longrightarrow C(X oplus Y, (A odot X) oplus (B odot Y)) $$
which corresponds under copowering to a map $(A otimes B) odot (X oplus Y) to (A odot X) oplus (B odot Y)$.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 10 mins ago

























answered 1 hour ago









Peter LeFanu LumsdainePeter LeFanu Lumsdaine

8,80613871




8,80613871











  • $begingroup$
    Good counterexample! Then maybe there is a canonical morphism in the other direction? Otherwise, I have the above problem with the associativity axiom for algebras over operads, as long as we do not assume that the copowering is a monoidal functor …
    $endgroup$
    – FKranhold
    1 hour ago










  • $begingroup$
    @FKranhold: Yes, there is a natural map in the converse direction — I’ll add the description of that in my answer.
    $endgroup$
    – Peter LeFanu Lumsdaine
    15 mins ago
















  • $begingroup$
    Good counterexample! Then maybe there is a canonical morphism in the other direction? Otherwise, I have the above problem with the associativity axiom for algebras over operads, as long as we do not assume that the copowering is a monoidal functor …
    $endgroup$
    – FKranhold
    1 hour ago










  • $begingroup$
    @FKranhold: Yes, there is a natural map in the converse direction — I’ll add the description of that in my answer.
    $endgroup$
    – Peter LeFanu Lumsdaine
    15 mins ago















$begingroup$
Good counterexample! Then maybe there is a canonical morphism in the other direction? Otherwise, I have the above problem with the associativity axiom for algebras over operads, as long as we do not assume that the copowering is a monoidal functor …
$endgroup$
– FKranhold
1 hour ago




$begingroup$
Good counterexample! Then maybe there is a canonical morphism in the other direction? Otherwise, I have the above problem with the associativity axiom for algebras over operads, as long as we do not assume that the copowering is a monoidal functor …
$endgroup$
– FKranhold
1 hour ago












$begingroup$
@FKranhold: Yes, there is a natural map in the converse direction — I’ll add the description of that in my answer.
$endgroup$
– Peter LeFanu Lumsdaine
15 mins ago




$begingroup$
@FKranhold: Yes, there is a natural map in the converse direction — I’ll add the description of that in my answer.
$endgroup$
– Peter LeFanu Lumsdaine
15 mins ago

















draft saved

draft discarded
















































Thanks for contributing an answer to MathOverflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f326520%2ftwo-monoidal-structures-and-copowering%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Are there any AGPL-style licences that require source code modifications to be public? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Force derivative works to be publicAre there any GPL like licenses for Apple App Store?Do you violate the GPL if you provide source code that cannot be compiled?GPL - is it distribution to use libraries in an appliance loaned to customers?Distributing App for free which uses GPL'ed codeModifications of server software under GPL, with web/CLI interfaceDoes using an AGPLv3-licensed library prevent me from dual-licensing my own source code?Can I publish only select code under GPLv3 from a private project?Is there published precedent regarding the scope of covered work that uses AGPL software?If MIT licensed code links to GPL licensed code what should be the license of the resulting binary program?If I use a public API endpoint that has its source code licensed under AGPL in my app, do I need to disclose my source?

2013 GY136 Descoberta | Órbita | Referências Menu de navegação«List Of Centaurs and Scattered-Disk Objects»«List of Known Trans-Neptunian Objects»

Button changing it's text & action. Good or terrible? The 2019 Stack Overflow Developer Survey Results Are Inchanging text on user mouseoverShould certain functions be “hard to find” for powerusers to discover?Custom liking function - do I need user login?Using different checkbox style for different checkbox behaviorBest Practices: Save and Exit in Software UIInteraction with remote validated formMore efficient UI to progress the user through a complicated process?Designing a popup notice for a gameShould bulk-editing functions be hidden until a table row is selected, or is there a better solution?Is it bad practice to disable (replace) the context menu?