Language involving irrational number is not a CFLConstructing a Context Free Grammar for checking non-equality of stringsRecursive language with non-recursive subsetsHow can I prove this language is not CFL?How to convert this type of languages to Context Free grammar?Describe the language generated by a given context free grammarProving/Disproving that language L is non-regular/CFLHow is $a^nb^nc^2n$ not a context free language, where as $a^nb^mc^n+m$ is?Proving a grammar/language as not regularWhen proof by induction on length string is not possible?Context-free grammar from language

What is this high flying aircraft over Pennsylvania?

How much do grades matter for a future academia position?

Why can't the Brexit deadlock in the UK parliament be solved with a plurality vote?

Do I have to take mana from my deck or hand when tapping a dual land?

Would this string work as string?

Proving an identity involving cross products and coplanar vectors

Make a Bowl of Alphabet Soup

Can I cause damage to electrical appliances by unplugging them when they are turned on?

Limit max CPU usage SQL SERVER with WSRM

Overlapping circles covering polygon

Personal or impersonal in a technical resume

Why is participating in the European Parliamentary elections used as a threat?

Anime with legendary swords made from talismans and a man who could change them with a shattered body

Given this phrasing in the lease, when should I pay my rent?

How to make a list of partial sums using forEach

I'm just a whisper. Who am I?

Isometric embedding of a genus g surface

Difference between shutdown options

How do you justify more code being written by following clean code practices?

Pre-Employment Background Check With Consent For Future Checks

In One Punch Man, is King actually weak?

ContourPlot — How do I color by contour curvature?

What's the name of the logical fallacy where a debater extends a statement far beyond the original statement to make it true?

Has the laser at Magurele, Romania reached a tenth of the Sun's power?



Language involving irrational number is not a CFL


Constructing a Context Free Grammar for checking non-equality of stringsRecursive language with non-recursive subsetsHow can I prove this language is not CFL?How to convert this type of languages to Context Free grammar?Describe the language generated by a given context free grammarProving/Disproving that language L is non-regular/CFLHow is $a^nb^nc^2n$ not a context free language, where as $a^nb^mc^n+m$ is?Proving a grammar/language as not regularWhen proof by induction on length string is not possible?Context-free grammar from language













8












$begingroup$


I am working through a hard exercise in a textbook, and I just can't figure out how to proceed. Here is the problem. Suppose we have the language $L = a^ib^j: i leq j gamma, igeq 0, jgeq 1$ where $gamma$ is some irrational number. How would I prove that $L$ is not a context-free language?



In the case when $gamma$ is rational, it's pretty easy to construct a grammar that accepts the language. But because $gamma$ is irrational, I don't really know what to do. It doesn't look like any of the pumping lemmas would work here. Maybe Parikh's theorem would work here, since it would intuitively seem like this language doesn't have an accompanying semilinear Parikh image.



This exercise is from "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit, Exercise 25 of Chapter 4.



I would really appreciate any help, or nudges in the right direction. Thank you!










share|cite|improve this question









New contributor




ChenyiShiwen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    Have you tried applying Parikh’s theorem?
    $endgroup$
    – Yuval Filmus
    8 hours ago











  • $begingroup$
    Why not show that it’s not semilinear directly? Use the definition.
    $endgroup$
    – Yuval Filmus
    7 hours ago






  • 3




    $begingroup$
    Just in time for my homework! Thanks. CS 462/662 Formal Languages and Parsing Winter 2019, Problem Set 9, exercise 3. Due Friday, March 22 2019.
    $endgroup$
    – Hendrik Jan
    4 hours ago











  • $begingroup$
    @ChenyiShiwen, so the pumping lemma does work.
    $endgroup$
    – Apass.Jack
    4 hours ago










  • $begingroup$
    @HendrikJan I'm selfstudying from the textbook "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit. It is Exercise 25 of Chapter 4 fyi. Would it be possible to hide this post until the assignment is due?
    $endgroup$
    – ChenyiShiwen
    1 hour ago















8












$begingroup$


I am working through a hard exercise in a textbook, and I just can't figure out how to proceed. Here is the problem. Suppose we have the language $L = a^ib^j: i leq j gamma, igeq 0, jgeq 1$ where $gamma$ is some irrational number. How would I prove that $L$ is not a context-free language?



In the case when $gamma$ is rational, it's pretty easy to construct a grammar that accepts the language. But because $gamma$ is irrational, I don't really know what to do. It doesn't look like any of the pumping lemmas would work here. Maybe Parikh's theorem would work here, since it would intuitively seem like this language doesn't have an accompanying semilinear Parikh image.



This exercise is from "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit, Exercise 25 of Chapter 4.



I would really appreciate any help, or nudges in the right direction. Thank you!










share|cite|improve this question









New contributor




ChenyiShiwen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    Have you tried applying Parikh’s theorem?
    $endgroup$
    – Yuval Filmus
    8 hours ago











  • $begingroup$
    Why not show that it’s not semilinear directly? Use the definition.
    $endgroup$
    – Yuval Filmus
    7 hours ago






  • 3




    $begingroup$
    Just in time for my homework! Thanks. CS 462/662 Formal Languages and Parsing Winter 2019, Problem Set 9, exercise 3. Due Friday, March 22 2019.
    $endgroup$
    – Hendrik Jan
    4 hours ago











  • $begingroup$
    @ChenyiShiwen, so the pumping lemma does work.
    $endgroup$
    – Apass.Jack
    4 hours ago










  • $begingroup$
    @HendrikJan I'm selfstudying from the textbook "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit. It is Exercise 25 of Chapter 4 fyi. Would it be possible to hide this post until the assignment is due?
    $endgroup$
    – ChenyiShiwen
    1 hour ago













8












8








8





$begingroup$


I am working through a hard exercise in a textbook, and I just can't figure out how to proceed. Here is the problem. Suppose we have the language $L = a^ib^j: i leq j gamma, igeq 0, jgeq 1$ where $gamma$ is some irrational number. How would I prove that $L$ is not a context-free language?



In the case when $gamma$ is rational, it's pretty easy to construct a grammar that accepts the language. But because $gamma$ is irrational, I don't really know what to do. It doesn't look like any of the pumping lemmas would work here. Maybe Parikh's theorem would work here, since it would intuitively seem like this language doesn't have an accompanying semilinear Parikh image.



This exercise is from "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit, Exercise 25 of Chapter 4.



I would really appreciate any help, or nudges in the right direction. Thank you!










share|cite|improve this question









New contributor




ChenyiShiwen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




I am working through a hard exercise in a textbook, and I just can't figure out how to proceed. Here is the problem. Suppose we have the language $L = a^ib^j: i leq j gamma, igeq 0, jgeq 1$ where $gamma$ is some irrational number. How would I prove that $L$ is not a context-free language?



In the case when $gamma$ is rational, it's pretty easy to construct a grammar that accepts the language. But because $gamma$ is irrational, I don't really know what to do. It doesn't look like any of the pumping lemmas would work here. Maybe Parikh's theorem would work here, since it would intuitively seem like this language doesn't have an accompanying semilinear Parikh image.



This exercise is from "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit, Exercise 25 of Chapter 4.



I would really appreciate any help, or nudges in the right direction. Thank you!







formal-languages automata context-free






share|cite|improve this question









New contributor




ChenyiShiwen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




ChenyiShiwen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 38 mins ago









D.W.

102k12127291




102k12127291






New contributor




ChenyiShiwen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 8 hours ago









ChenyiShiwenChenyiShiwen

434




434




New contributor




ChenyiShiwen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





ChenyiShiwen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






ChenyiShiwen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    Have you tried applying Parikh’s theorem?
    $endgroup$
    – Yuval Filmus
    8 hours ago











  • $begingroup$
    Why not show that it’s not semilinear directly? Use the definition.
    $endgroup$
    – Yuval Filmus
    7 hours ago






  • 3




    $begingroup$
    Just in time for my homework! Thanks. CS 462/662 Formal Languages and Parsing Winter 2019, Problem Set 9, exercise 3. Due Friday, March 22 2019.
    $endgroup$
    – Hendrik Jan
    4 hours ago











  • $begingroup$
    @ChenyiShiwen, so the pumping lemma does work.
    $endgroup$
    – Apass.Jack
    4 hours ago










  • $begingroup$
    @HendrikJan I'm selfstudying from the textbook "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit. It is Exercise 25 of Chapter 4 fyi. Would it be possible to hide this post until the assignment is due?
    $endgroup$
    – ChenyiShiwen
    1 hour ago
















  • $begingroup$
    Have you tried applying Parikh’s theorem?
    $endgroup$
    – Yuval Filmus
    8 hours ago











  • $begingroup$
    Why not show that it’s not semilinear directly? Use the definition.
    $endgroup$
    – Yuval Filmus
    7 hours ago






  • 3




    $begingroup$
    Just in time for my homework! Thanks. CS 462/662 Formal Languages and Parsing Winter 2019, Problem Set 9, exercise 3. Due Friday, March 22 2019.
    $endgroup$
    – Hendrik Jan
    4 hours ago











  • $begingroup$
    @ChenyiShiwen, so the pumping lemma does work.
    $endgroup$
    – Apass.Jack
    4 hours ago










  • $begingroup$
    @HendrikJan I'm selfstudying from the textbook "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit. It is Exercise 25 of Chapter 4 fyi. Would it be possible to hide this post until the assignment is due?
    $endgroup$
    – ChenyiShiwen
    1 hour ago















$begingroup$
Have you tried applying Parikh’s theorem?
$endgroup$
– Yuval Filmus
8 hours ago





$begingroup$
Have you tried applying Parikh’s theorem?
$endgroup$
– Yuval Filmus
8 hours ago













$begingroup$
Why not show that it’s not semilinear directly? Use the definition.
$endgroup$
– Yuval Filmus
7 hours ago




$begingroup$
Why not show that it’s not semilinear directly? Use the definition.
$endgroup$
– Yuval Filmus
7 hours ago




3




3




$begingroup$
Just in time for my homework! Thanks. CS 462/662 Formal Languages and Parsing Winter 2019, Problem Set 9, exercise 3. Due Friday, March 22 2019.
$endgroup$
– Hendrik Jan
4 hours ago





$begingroup$
Just in time for my homework! Thanks. CS 462/662 Formal Languages and Parsing Winter 2019, Problem Set 9, exercise 3. Due Friday, March 22 2019.
$endgroup$
– Hendrik Jan
4 hours ago













$begingroup$
@ChenyiShiwen, so the pumping lemma does work.
$endgroup$
– Apass.Jack
4 hours ago




$begingroup$
@ChenyiShiwen, so the pumping lemma does work.
$endgroup$
– Apass.Jack
4 hours ago












$begingroup$
@HendrikJan I'm selfstudying from the textbook "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit. It is Exercise 25 of Chapter 4 fyi. Would it be possible to hide this post until the assignment is due?
$endgroup$
– ChenyiShiwen
1 hour ago




$begingroup$
@HendrikJan I'm selfstudying from the textbook "A Second Course in Formal Languages and Automata Theory" by Jeffrey Shallit. It is Exercise 25 of Chapter 4 fyi. Would it be possible to hide this post until the assignment is due?
$endgroup$
– ChenyiShiwen
1 hour ago










2 Answers
2






active

oldest

votes


















6












$begingroup$

According to Parikh's theorem, if $L$ were context-free then the set $M = (a,b) : a leq gamma b $ would be semilinear, that is, it would be the union of finitely many sets of the form $S = u_0 + mathbbN u_1 + cdots + mathbbN u_ell$, for some $u_i = (a_i,b_i)$.



Obviously $u_0 in M$, and moreover $u_i in M$ for each $i > 0$, since otherwise $u_0 + N u_i notin M$ for large enough $N$. Therefore $g(S) := max(a_0/b_0,ldots,a_ell/b_ell) < gamma$ (since $g(S)$ is rational). This means that every $(a,b) in S$ satisfies $a/b leq g(S)$.



Now suppose that $M$ is the union of $S^(1),ldots,S^(m)$, and define $g = max(g(S^(1)),ldots,g(S^(m))) < gamma$. The foregoing shows that every $(a,b)$ in the union satisfies $a/b leq g < gamma$, and we obtain a contradiction, since $sup a/b : (a,b) in M = gamma$.




When $gamma$ is rational, the proof fails, and indeed $M$ is semilinear:
$$
(a,b) : a leq tfracst b = bigcup_a=0^s-1 (a,lceil tfracts a rceil) + mathbbN (s,t) + mathbbN (0,1).
$$

Indeed, by construction, any pair $(a,b)$ in the right-hand side satisfies $a leq tfracst b$ (since $s = tfracst t$). Conversely, suppose that $a leq fracst b$. While $a geq s$ and $b geq t$, subtract $(s,t)$ from $(a,b)$. Eventually $a < s$ (since $b < t$ implies $a leq fracstb < s$). Since $a leq fracst b$, necessarily $b geq lceil tfracts a rceil$. Hence we can subtract $(0,1)$ from $(a,b)$ until we reach $(a,lceil tfracts a rceil)$.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Nice answer. Just a clarification, the logic behind "every $(a,b) in S$ satisfies $a/b leq g(S)$" is that otherwise if there was an $(a,b)> g(S)$, then we could build an $(x,y)in S$ such that $x/y$ is as large as wanted and therefore larger than $gamma$?
    $endgroup$
    – ChenyiShiwen
    4 hours ago











  • $begingroup$
    No, this follows directly from the definition of $g(S)$. Your argument explains why $g(S) < gamma$.
    $endgroup$
    – Yuval Filmus
    4 hours ago


















4












$begingroup$

Every variable except $gamma$ in this answer stands for a positive integer. It is well-known that given an irrational $gamma>0$, there is a sequence of rational numbers $dfraca_1b_1ltdfraca_2b_2ltdfraca_3b_3ltcdots ltgamma$ such that $dfraca_ib_i$ is nearer to $gamma$ than any other rational number smaller than $gamma$ whose denominator is less than $b_i$.




It turns out that the pumping lemma does work!



For the sake of contradiction, let $p$ be the pumping length of $L$ as a context-free language. Let $s=a^a_pb^b_p$, a word that is $L$ but "barely". Note that $|s|>b_pge p$. Consider
$s=uvwxy$, where $|vx|> 1$ and $s_n=uv^nwx^nyin L$ for all $nge0$.



Let $t_a$ and $t_b$ be the number of $a$s and $b$s in $vx$ respectively.



  • If $t_b=0$ or $dfract_at_bgtgamma$, for $n$ large enough, the ratio of the number of $a$s to that of $b$s in $s_n$ will be larger than $gamma$, i.e., $s_nnotin L$.

  • Otherwise, $dfract_at_bltgamma$. Since $t_b<b_p$, $dfract_at_blt dfraca_pb_p$. Hence,
    $dfraca_p-t_ab_p-t_b>dfraca_pb_p$
    Since $b_p-t_b<b_p$, $dfraca_p-t_ab_p-t_b>gamma,$
    which says that $s_0notin L$.

The above contradiction shows that $L$ cannot be context-free.




Here are two related easier exercises.



Exercise 1. Show that $L_gamma=a^lfloor i gammarfloor: iinBbb N$ is not context-free where $gamma$ is an irrational number.



Exercise 2. Show that $L_gamma=a^ib^j: i leq j gamma, i ge0, jge 0$ is context-free where $gamma$ is a rational number.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    The property in the answer can be proved simply by selecting all rational numbers that is nearer to $gamma$ than all previous numbers in the list of all rational numbers that are smaller than $gamma$ in the order of increasing denominators and, for the same denominators, in increasing order.
    $endgroup$
    – Apass.Jack
    4 hours ago











  • $begingroup$
    The usual construction is to take convergents of the continued fraction.
    $endgroup$
    – Yuval Filmus
    3 hours ago










  • $begingroup$
    @YuvalFilmus Yes, I agree. On the other hand, that almost-one-line proof is much simpler and accessible. (the "increasing order" in my last message should be "decreasing order".)
    $endgroup$
    – Apass.Jack
    3 hours ago











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "419"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);






ChenyiShiwen is a new contributor. Be nice, and check out our Code of Conduct.









draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f105836%2flanguage-involving-irrational-number-is-not-a-cfl%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









6












$begingroup$

According to Parikh's theorem, if $L$ were context-free then the set $M = (a,b) : a leq gamma b $ would be semilinear, that is, it would be the union of finitely many sets of the form $S = u_0 + mathbbN u_1 + cdots + mathbbN u_ell$, for some $u_i = (a_i,b_i)$.



Obviously $u_0 in M$, and moreover $u_i in M$ for each $i > 0$, since otherwise $u_0 + N u_i notin M$ for large enough $N$. Therefore $g(S) := max(a_0/b_0,ldots,a_ell/b_ell) < gamma$ (since $g(S)$ is rational). This means that every $(a,b) in S$ satisfies $a/b leq g(S)$.



Now suppose that $M$ is the union of $S^(1),ldots,S^(m)$, and define $g = max(g(S^(1)),ldots,g(S^(m))) < gamma$. The foregoing shows that every $(a,b)$ in the union satisfies $a/b leq g < gamma$, and we obtain a contradiction, since $sup a/b : (a,b) in M = gamma$.




When $gamma$ is rational, the proof fails, and indeed $M$ is semilinear:
$$
(a,b) : a leq tfracst b = bigcup_a=0^s-1 (a,lceil tfracts a rceil) + mathbbN (s,t) + mathbbN (0,1).
$$

Indeed, by construction, any pair $(a,b)$ in the right-hand side satisfies $a leq tfracst b$ (since $s = tfracst t$). Conversely, suppose that $a leq fracst b$. While $a geq s$ and $b geq t$, subtract $(s,t)$ from $(a,b)$. Eventually $a < s$ (since $b < t$ implies $a leq fracstb < s$). Since $a leq fracst b$, necessarily $b geq lceil tfracts a rceil$. Hence we can subtract $(0,1)$ from $(a,b)$ until we reach $(a,lceil tfracts a rceil)$.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Nice answer. Just a clarification, the logic behind "every $(a,b) in S$ satisfies $a/b leq g(S)$" is that otherwise if there was an $(a,b)> g(S)$, then we could build an $(x,y)in S$ such that $x/y$ is as large as wanted and therefore larger than $gamma$?
    $endgroup$
    – ChenyiShiwen
    4 hours ago











  • $begingroup$
    No, this follows directly from the definition of $g(S)$. Your argument explains why $g(S) < gamma$.
    $endgroup$
    – Yuval Filmus
    4 hours ago















6












$begingroup$

According to Parikh's theorem, if $L$ were context-free then the set $M = (a,b) : a leq gamma b $ would be semilinear, that is, it would be the union of finitely many sets of the form $S = u_0 + mathbbN u_1 + cdots + mathbbN u_ell$, for some $u_i = (a_i,b_i)$.



Obviously $u_0 in M$, and moreover $u_i in M$ for each $i > 0$, since otherwise $u_0 + N u_i notin M$ for large enough $N$. Therefore $g(S) := max(a_0/b_0,ldots,a_ell/b_ell) < gamma$ (since $g(S)$ is rational). This means that every $(a,b) in S$ satisfies $a/b leq g(S)$.



Now suppose that $M$ is the union of $S^(1),ldots,S^(m)$, and define $g = max(g(S^(1)),ldots,g(S^(m))) < gamma$. The foregoing shows that every $(a,b)$ in the union satisfies $a/b leq g < gamma$, and we obtain a contradiction, since $sup a/b : (a,b) in M = gamma$.




When $gamma$ is rational, the proof fails, and indeed $M$ is semilinear:
$$
(a,b) : a leq tfracst b = bigcup_a=0^s-1 (a,lceil tfracts a rceil) + mathbbN (s,t) + mathbbN (0,1).
$$

Indeed, by construction, any pair $(a,b)$ in the right-hand side satisfies $a leq tfracst b$ (since $s = tfracst t$). Conversely, suppose that $a leq fracst b$. While $a geq s$ and $b geq t$, subtract $(s,t)$ from $(a,b)$. Eventually $a < s$ (since $b < t$ implies $a leq fracstb < s$). Since $a leq fracst b$, necessarily $b geq lceil tfracts a rceil$. Hence we can subtract $(0,1)$ from $(a,b)$ until we reach $(a,lceil tfracts a rceil)$.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Nice answer. Just a clarification, the logic behind "every $(a,b) in S$ satisfies $a/b leq g(S)$" is that otherwise if there was an $(a,b)> g(S)$, then we could build an $(x,y)in S$ such that $x/y$ is as large as wanted and therefore larger than $gamma$?
    $endgroup$
    – ChenyiShiwen
    4 hours ago











  • $begingroup$
    No, this follows directly from the definition of $g(S)$. Your argument explains why $g(S) < gamma$.
    $endgroup$
    – Yuval Filmus
    4 hours ago













6












6








6





$begingroup$

According to Parikh's theorem, if $L$ were context-free then the set $M = (a,b) : a leq gamma b $ would be semilinear, that is, it would be the union of finitely many sets of the form $S = u_0 + mathbbN u_1 + cdots + mathbbN u_ell$, for some $u_i = (a_i,b_i)$.



Obviously $u_0 in M$, and moreover $u_i in M$ for each $i > 0$, since otherwise $u_0 + N u_i notin M$ for large enough $N$. Therefore $g(S) := max(a_0/b_0,ldots,a_ell/b_ell) < gamma$ (since $g(S)$ is rational). This means that every $(a,b) in S$ satisfies $a/b leq g(S)$.



Now suppose that $M$ is the union of $S^(1),ldots,S^(m)$, and define $g = max(g(S^(1)),ldots,g(S^(m))) < gamma$. The foregoing shows that every $(a,b)$ in the union satisfies $a/b leq g < gamma$, and we obtain a contradiction, since $sup a/b : (a,b) in M = gamma$.




When $gamma$ is rational, the proof fails, and indeed $M$ is semilinear:
$$
(a,b) : a leq tfracst b = bigcup_a=0^s-1 (a,lceil tfracts a rceil) + mathbbN (s,t) + mathbbN (0,1).
$$

Indeed, by construction, any pair $(a,b)$ in the right-hand side satisfies $a leq tfracst b$ (since $s = tfracst t$). Conversely, suppose that $a leq fracst b$. While $a geq s$ and $b geq t$, subtract $(s,t)$ from $(a,b)$. Eventually $a < s$ (since $b < t$ implies $a leq fracstb < s$). Since $a leq fracst b$, necessarily $b geq lceil tfracts a rceil$. Hence we can subtract $(0,1)$ from $(a,b)$ until we reach $(a,lceil tfracts a rceil)$.






share|cite|improve this answer









$endgroup$



According to Parikh's theorem, if $L$ were context-free then the set $M = (a,b) : a leq gamma b $ would be semilinear, that is, it would be the union of finitely many sets of the form $S = u_0 + mathbbN u_1 + cdots + mathbbN u_ell$, for some $u_i = (a_i,b_i)$.



Obviously $u_0 in M$, and moreover $u_i in M$ for each $i > 0$, since otherwise $u_0 + N u_i notin M$ for large enough $N$. Therefore $g(S) := max(a_0/b_0,ldots,a_ell/b_ell) < gamma$ (since $g(S)$ is rational). This means that every $(a,b) in S$ satisfies $a/b leq g(S)$.



Now suppose that $M$ is the union of $S^(1),ldots,S^(m)$, and define $g = max(g(S^(1)),ldots,g(S^(m))) < gamma$. The foregoing shows that every $(a,b)$ in the union satisfies $a/b leq g < gamma$, and we obtain a contradiction, since $sup a/b : (a,b) in M = gamma$.




When $gamma$ is rational, the proof fails, and indeed $M$ is semilinear:
$$
(a,b) : a leq tfracst b = bigcup_a=0^s-1 (a,lceil tfracts a rceil) + mathbbN (s,t) + mathbbN (0,1).
$$

Indeed, by construction, any pair $(a,b)$ in the right-hand side satisfies $a leq tfracst b$ (since $s = tfracst t$). Conversely, suppose that $a leq fracst b$. While $a geq s$ and $b geq t$, subtract $(s,t)$ from $(a,b)$. Eventually $a < s$ (since $b < t$ implies $a leq fracstb < s$). Since $a leq fracst b$, necessarily $b geq lceil tfracts a rceil$. Hence we can subtract $(0,1)$ from $(a,b)$ until we reach $(a,lceil tfracts a rceil)$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 5 hours ago









Yuval FilmusYuval Filmus

195k14183347




195k14183347











  • $begingroup$
    Nice answer. Just a clarification, the logic behind "every $(a,b) in S$ satisfies $a/b leq g(S)$" is that otherwise if there was an $(a,b)> g(S)$, then we could build an $(x,y)in S$ such that $x/y$ is as large as wanted and therefore larger than $gamma$?
    $endgroup$
    – ChenyiShiwen
    4 hours ago











  • $begingroup$
    No, this follows directly from the definition of $g(S)$. Your argument explains why $g(S) < gamma$.
    $endgroup$
    – Yuval Filmus
    4 hours ago
















  • $begingroup$
    Nice answer. Just a clarification, the logic behind "every $(a,b) in S$ satisfies $a/b leq g(S)$" is that otherwise if there was an $(a,b)> g(S)$, then we could build an $(x,y)in S$ such that $x/y$ is as large as wanted and therefore larger than $gamma$?
    $endgroup$
    – ChenyiShiwen
    4 hours ago











  • $begingroup$
    No, this follows directly from the definition of $g(S)$. Your argument explains why $g(S) < gamma$.
    $endgroup$
    – Yuval Filmus
    4 hours ago















$begingroup$
Nice answer. Just a clarification, the logic behind "every $(a,b) in S$ satisfies $a/b leq g(S)$" is that otherwise if there was an $(a,b)> g(S)$, then we could build an $(x,y)in S$ such that $x/y$ is as large as wanted and therefore larger than $gamma$?
$endgroup$
– ChenyiShiwen
4 hours ago





$begingroup$
Nice answer. Just a clarification, the logic behind "every $(a,b) in S$ satisfies $a/b leq g(S)$" is that otherwise if there was an $(a,b)> g(S)$, then we could build an $(x,y)in S$ such that $x/y$ is as large as wanted and therefore larger than $gamma$?
$endgroup$
– ChenyiShiwen
4 hours ago













$begingroup$
No, this follows directly from the definition of $g(S)$. Your argument explains why $g(S) < gamma$.
$endgroup$
– Yuval Filmus
4 hours ago




$begingroup$
No, this follows directly from the definition of $g(S)$. Your argument explains why $g(S) < gamma$.
$endgroup$
– Yuval Filmus
4 hours ago











4












$begingroup$

Every variable except $gamma$ in this answer stands for a positive integer. It is well-known that given an irrational $gamma>0$, there is a sequence of rational numbers $dfraca_1b_1ltdfraca_2b_2ltdfraca_3b_3ltcdots ltgamma$ such that $dfraca_ib_i$ is nearer to $gamma$ than any other rational number smaller than $gamma$ whose denominator is less than $b_i$.




It turns out that the pumping lemma does work!



For the sake of contradiction, let $p$ be the pumping length of $L$ as a context-free language. Let $s=a^a_pb^b_p$, a word that is $L$ but "barely". Note that $|s|>b_pge p$. Consider
$s=uvwxy$, where $|vx|> 1$ and $s_n=uv^nwx^nyin L$ for all $nge0$.



Let $t_a$ and $t_b$ be the number of $a$s and $b$s in $vx$ respectively.



  • If $t_b=0$ or $dfract_at_bgtgamma$, for $n$ large enough, the ratio of the number of $a$s to that of $b$s in $s_n$ will be larger than $gamma$, i.e., $s_nnotin L$.

  • Otherwise, $dfract_at_bltgamma$. Since $t_b<b_p$, $dfract_at_blt dfraca_pb_p$. Hence,
    $dfraca_p-t_ab_p-t_b>dfraca_pb_p$
    Since $b_p-t_b<b_p$, $dfraca_p-t_ab_p-t_b>gamma,$
    which says that $s_0notin L$.

The above contradiction shows that $L$ cannot be context-free.




Here are two related easier exercises.



Exercise 1. Show that $L_gamma=a^lfloor i gammarfloor: iinBbb N$ is not context-free where $gamma$ is an irrational number.



Exercise 2. Show that $L_gamma=a^ib^j: i leq j gamma, i ge0, jge 0$ is context-free where $gamma$ is a rational number.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    The property in the answer can be proved simply by selecting all rational numbers that is nearer to $gamma$ than all previous numbers in the list of all rational numbers that are smaller than $gamma$ in the order of increasing denominators and, for the same denominators, in increasing order.
    $endgroup$
    – Apass.Jack
    4 hours ago











  • $begingroup$
    The usual construction is to take convergents of the continued fraction.
    $endgroup$
    – Yuval Filmus
    3 hours ago










  • $begingroup$
    @YuvalFilmus Yes, I agree. On the other hand, that almost-one-line proof is much simpler and accessible. (the "increasing order" in my last message should be "decreasing order".)
    $endgroup$
    – Apass.Jack
    3 hours ago
















4












$begingroup$

Every variable except $gamma$ in this answer stands for a positive integer. It is well-known that given an irrational $gamma>0$, there is a sequence of rational numbers $dfraca_1b_1ltdfraca_2b_2ltdfraca_3b_3ltcdots ltgamma$ such that $dfraca_ib_i$ is nearer to $gamma$ than any other rational number smaller than $gamma$ whose denominator is less than $b_i$.




It turns out that the pumping lemma does work!



For the sake of contradiction, let $p$ be the pumping length of $L$ as a context-free language. Let $s=a^a_pb^b_p$, a word that is $L$ but "barely". Note that $|s|>b_pge p$. Consider
$s=uvwxy$, where $|vx|> 1$ and $s_n=uv^nwx^nyin L$ for all $nge0$.



Let $t_a$ and $t_b$ be the number of $a$s and $b$s in $vx$ respectively.



  • If $t_b=0$ or $dfract_at_bgtgamma$, for $n$ large enough, the ratio of the number of $a$s to that of $b$s in $s_n$ will be larger than $gamma$, i.e., $s_nnotin L$.

  • Otherwise, $dfract_at_bltgamma$. Since $t_b<b_p$, $dfract_at_blt dfraca_pb_p$. Hence,
    $dfraca_p-t_ab_p-t_b>dfraca_pb_p$
    Since $b_p-t_b<b_p$, $dfraca_p-t_ab_p-t_b>gamma,$
    which says that $s_0notin L$.

The above contradiction shows that $L$ cannot be context-free.




Here are two related easier exercises.



Exercise 1. Show that $L_gamma=a^lfloor i gammarfloor: iinBbb N$ is not context-free where $gamma$ is an irrational number.



Exercise 2. Show that $L_gamma=a^ib^j: i leq j gamma, i ge0, jge 0$ is context-free where $gamma$ is a rational number.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    The property in the answer can be proved simply by selecting all rational numbers that is nearer to $gamma$ than all previous numbers in the list of all rational numbers that are smaller than $gamma$ in the order of increasing denominators and, for the same denominators, in increasing order.
    $endgroup$
    – Apass.Jack
    4 hours ago











  • $begingroup$
    The usual construction is to take convergents of the continued fraction.
    $endgroup$
    – Yuval Filmus
    3 hours ago










  • $begingroup$
    @YuvalFilmus Yes, I agree. On the other hand, that almost-one-line proof is much simpler and accessible. (the "increasing order" in my last message should be "decreasing order".)
    $endgroup$
    – Apass.Jack
    3 hours ago














4












4








4





$begingroup$

Every variable except $gamma$ in this answer stands for a positive integer. It is well-known that given an irrational $gamma>0$, there is a sequence of rational numbers $dfraca_1b_1ltdfraca_2b_2ltdfraca_3b_3ltcdots ltgamma$ such that $dfraca_ib_i$ is nearer to $gamma$ than any other rational number smaller than $gamma$ whose denominator is less than $b_i$.




It turns out that the pumping lemma does work!



For the sake of contradiction, let $p$ be the pumping length of $L$ as a context-free language. Let $s=a^a_pb^b_p$, a word that is $L$ but "barely". Note that $|s|>b_pge p$. Consider
$s=uvwxy$, where $|vx|> 1$ and $s_n=uv^nwx^nyin L$ for all $nge0$.



Let $t_a$ and $t_b$ be the number of $a$s and $b$s in $vx$ respectively.



  • If $t_b=0$ or $dfract_at_bgtgamma$, for $n$ large enough, the ratio of the number of $a$s to that of $b$s in $s_n$ will be larger than $gamma$, i.e., $s_nnotin L$.

  • Otherwise, $dfract_at_bltgamma$. Since $t_b<b_p$, $dfract_at_blt dfraca_pb_p$. Hence,
    $dfraca_p-t_ab_p-t_b>dfraca_pb_p$
    Since $b_p-t_b<b_p$, $dfraca_p-t_ab_p-t_b>gamma,$
    which says that $s_0notin L$.

The above contradiction shows that $L$ cannot be context-free.




Here are two related easier exercises.



Exercise 1. Show that $L_gamma=a^lfloor i gammarfloor: iinBbb N$ is not context-free where $gamma$ is an irrational number.



Exercise 2. Show that $L_gamma=a^ib^j: i leq j gamma, i ge0, jge 0$ is context-free where $gamma$ is a rational number.






share|cite|improve this answer











$endgroup$



Every variable except $gamma$ in this answer stands for a positive integer. It is well-known that given an irrational $gamma>0$, there is a sequence of rational numbers $dfraca_1b_1ltdfraca_2b_2ltdfraca_3b_3ltcdots ltgamma$ such that $dfraca_ib_i$ is nearer to $gamma$ than any other rational number smaller than $gamma$ whose denominator is less than $b_i$.




It turns out that the pumping lemma does work!



For the sake of contradiction, let $p$ be the pumping length of $L$ as a context-free language. Let $s=a^a_pb^b_p$, a word that is $L$ but "barely". Note that $|s|>b_pge p$. Consider
$s=uvwxy$, where $|vx|> 1$ and $s_n=uv^nwx^nyin L$ for all $nge0$.



Let $t_a$ and $t_b$ be the number of $a$s and $b$s in $vx$ respectively.



  • If $t_b=0$ or $dfract_at_bgtgamma$, for $n$ large enough, the ratio of the number of $a$s to that of $b$s in $s_n$ will be larger than $gamma$, i.e., $s_nnotin L$.

  • Otherwise, $dfract_at_bltgamma$. Since $t_b<b_p$, $dfract_at_blt dfraca_pb_p$. Hence,
    $dfraca_p-t_ab_p-t_b>dfraca_pb_p$
    Since $b_p-t_b<b_p$, $dfraca_p-t_ab_p-t_b>gamma,$
    which says that $s_0notin L$.

The above contradiction shows that $L$ cannot be context-free.




Here are two related easier exercises.



Exercise 1. Show that $L_gamma=a^lfloor i gammarfloor: iinBbb N$ is not context-free where $gamma$ is an irrational number.



Exercise 2. Show that $L_gamma=a^ib^j: i leq j gamma, i ge0, jge 0$ is context-free where $gamma$ is a rational number.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 3 hours ago

























answered 4 hours ago









Apass.JackApass.Jack

13.1k1939




13.1k1939











  • $begingroup$
    The property in the answer can be proved simply by selecting all rational numbers that is nearer to $gamma$ than all previous numbers in the list of all rational numbers that are smaller than $gamma$ in the order of increasing denominators and, for the same denominators, in increasing order.
    $endgroup$
    – Apass.Jack
    4 hours ago











  • $begingroup$
    The usual construction is to take convergents of the continued fraction.
    $endgroup$
    – Yuval Filmus
    3 hours ago










  • $begingroup$
    @YuvalFilmus Yes, I agree. On the other hand, that almost-one-line proof is much simpler and accessible. (the "increasing order" in my last message should be "decreasing order".)
    $endgroup$
    – Apass.Jack
    3 hours ago

















  • $begingroup$
    The property in the answer can be proved simply by selecting all rational numbers that is nearer to $gamma$ than all previous numbers in the list of all rational numbers that are smaller than $gamma$ in the order of increasing denominators and, for the same denominators, in increasing order.
    $endgroup$
    – Apass.Jack
    4 hours ago











  • $begingroup$
    The usual construction is to take convergents of the continued fraction.
    $endgroup$
    – Yuval Filmus
    3 hours ago










  • $begingroup$
    @YuvalFilmus Yes, I agree. On the other hand, that almost-one-line proof is much simpler and accessible. (the "increasing order" in my last message should be "decreasing order".)
    $endgroup$
    – Apass.Jack
    3 hours ago
















$begingroup$
The property in the answer can be proved simply by selecting all rational numbers that is nearer to $gamma$ than all previous numbers in the list of all rational numbers that are smaller than $gamma$ in the order of increasing denominators and, for the same denominators, in increasing order.
$endgroup$
– Apass.Jack
4 hours ago





$begingroup$
The property in the answer can be proved simply by selecting all rational numbers that is nearer to $gamma$ than all previous numbers in the list of all rational numbers that are smaller than $gamma$ in the order of increasing denominators and, for the same denominators, in increasing order.
$endgroup$
– Apass.Jack
4 hours ago













$begingroup$
The usual construction is to take convergents of the continued fraction.
$endgroup$
– Yuval Filmus
3 hours ago




$begingroup$
The usual construction is to take convergents of the continued fraction.
$endgroup$
– Yuval Filmus
3 hours ago












$begingroup$
@YuvalFilmus Yes, I agree. On the other hand, that almost-one-line proof is much simpler and accessible. (the "increasing order" in my last message should be "decreasing order".)
$endgroup$
– Apass.Jack
3 hours ago





$begingroup$
@YuvalFilmus Yes, I agree. On the other hand, that almost-one-line proof is much simpler and accessible. (the "increasing order" in my last message should be "decreasing order".)
$endgroup$
– Apass.Jack
3 hours ago











ChenyiShiwen is a new contributor. Be nice, and check out our Code of Conduct.









draft saved

draft discarded


















ChenyiShiwen is a new contributor. Be nice, and check out our Code of Conduct.












ChenyiShiwen is a new contributor. Be nice, and check out our Code of Conduct.











ChenyiShiwen is a new contributor. Be nice, and check out our Code of Conduct.














Thanks for contributing an answer to Computer Science Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f105836%2flanguage-involving-irrational-number-is-not-a-cfl%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Are there any AGPL-style licences that require source code modifications to be public? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Force derivative works to be publicAre there any GPL like licenses for Apple App Store?Do you violate the GPL if you provide source code that cannot be compiled?GPL - is it distribution to use libraries in an appliance loaned to customers?Distributing App for free which uses GPL'ed codeModifications of server software under GPL, with web/CLI interfaceDoes using an AGPLv3-licensed library prevent me from dual-licensing my own source code?Can I publish only select code under GPLv3 from a private project?Is there published precedent regarding the scope of covered work that uses AGPL software?If MIT licensed code links to GPL licensed code what should be the license of the resulting binary program?If I use a public API endpoint that has its source code licensed under AGPL in my app, do I need to disclose my source?

2013 GY136 Descoberta | Órbita | Referências Menu de navegação«List Of Centaurs and Scattered-Disk Objects»«List of Known Trans-Neptunian Objects»

Button changing it's text & action. Good or terrible? The 2019 Stack Overflow Developer Survey Results Are Inchanging text on user mouseoverShould certain functions be “hard to find” for powerusers to discover?Custom liking function - do I need user login?Using different checkbox style for different checkbox behaviorBest Practices: Save and Exit in Software UIInteraction with remote validated formMore efficient UI to progress the user through a complicated process?Designing a popup notice for a gameShould bulk-editing functions be hidden until a table row is selected, or is there a better solution?Is it bad practice to disable (replace) the context menu?