Proving the given $mathbb R^3/H$ $cong$ $mathbb R^2$ where $H$ = y in mathbb R$ The 2019 Stack Overflow Developer Survey Results Are In Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar ManaraAre $(mathbbR,+)$ and $(mathbbC,+)$ isomorphic as additive groups?How do I show that these two presentations are isomorphic?Determine whether or not the two given groups are isomorphic.Surjective Homomorphisms of Isomorphic Abelian GroupsGroup isomorphism between two groups .How to use the first isomorphism theorem to show that two groups are isomorphic?Showing that these two groups are isomorphic?Showing that $2$ of the following groups are not isomorphicShow that the Two Given Groups are IsomorphicAre given groups isomorphic

Can I visit the Trinity College (Cambridge) library and see some of their rare books

Circular reasoning in L'Hopital's rule

Did the UK government pay "millions and millions of dollars" to try to snag Julian Assange?

How to support a colleague who finds meetings extremely tiring?

What aspect of planet Earth must be changed to prevent the industrial revolution?

What was the last x86 CPU that did not have the x87 floating-point unit built in?

Working through the single responsibility principle (SRP) in Python when calls are expensive

The following signatures were invalid: EXPKEYSIG 1397BC53640DB551

how can a perfect fourth interval be considered either consonant or dissonant?

Identify 80s or 90s comics with ripped creatures (not dwarves)

Word for: a synonym with a positive connotation?

What force causes entropy to increase?

Is there a writing software that you can sort scenes like slides in PowerPoint?

Proving the given two groups are isomorphic

Is it ok to offer lower paid work as a trial period before negotiating for a full-time job?

Windows 10: How to Lock (not sleep) laptop on lid close?

One-dimensional Japanese puzzle

Is an up-to-date browser secure on an out-of-date OS?

Using dividends to reduce short term capital gains?

Is it ethical to upload a automatically generated paper to a non peer-reviewed site as part of a larger research?

Why not take a picture of a closer black hole?

Visa regaring travelling European country

should truth entail possible truth

Example of compact Riemannian manifold with only one geodesic.



Proving the given $mathbb R^3/H$ $cong$ $mathbb R^2$ where $H$ = $(y,0,0)



The 2019 Stack Overflow Developer Survey Results Are In
Unicorn Meta Zoo #1: Why another podcast?
Announcing the arrival of Valued Associate #679: Cesar ManaraAre $(mathbbR,+)$ and $(mathbbC,+)$ isomorphic as additive groups?How do I show that these two presentations are isomorphic?Determine whether or not the two given groups are isomorphic.Surjective Homomorphisms of Isomorphic Abelian GroupsGroup isomorphism between two groups .How to use the first isomorphism theorem to show that two groups are isomorphic?Showing that these two groups are isomorphic?Showing that $2$ of the following groups are not isomorphicShow that the Two Given Groups are IsomorphicAre given groups isomorphic










1












$begingroup$


So I am given a group $mathbb R^3$ and a group $H$ = $(y,0,0). I have to prove that that $mathbb R^3/H$ $cong$ $mathbb R^2$. I am not sure how to even begin. My difficulty is coming up with a map between the two sets. I have already verified that $H unlhd mathbb R^3$. So all I know is $mathbb R^3/H$ is a group. Also, from first isomorphism theorem, I know that the group is isomorphic to the image of the map $f: mathbb R^3 to A$, and I do not know what that $A$ is supposed to be. Today is the first day I learned about isomorphism, and I am very confused about what is going on. Can anyone provide some help on this?










share|cite|improve this question











$endgroup$
















    1












    $begingroup$


    So I am given a group $mathbb R^3$ and a group $H$ = $(y,0,0). I have to prove that that $mathbb R^3/H$ $cong$ $mathbb R^2$. I am not sure how to even begin. My difficulty is coming up with a map between the two sets. I have already verified that $H unlhd mathbb R^3$. So all I know is $mathbb R^3/H$ is a group. Also, from first isomorphism theorem, I know that the group is isomorphic to the image of the map $f: mathbb R^3 to A$, and I do not know what that $A$ is supposed to be. Today is the first day I learned about isomorphism, and I am very confused about what is going on. Can anyone provide some help on this?










    share|cite|improve this question











    $endgroup$














      1












      1








      1





      $begingroup$


      So I am given a group $mathbb R^3$ and a group $H$ = $(y,0,0). I have to prove that that $mathbb R^3/H$ $cong$ $mathbb R^2$. I am not sure how to even begin. My difficulty is coming up with a map between the two sets. I have already verified that $H unlhd mathbb R^3$. So all I know is $mathbb R^3/H$ is a group. Also, from first isomorphism theorem, I know that the group is isomorphic to the image of the map $f: mathbb R^3 to A$, and I do not know what that $A$ is supposed to be. Today is the first day I learned about isomorphism, and I am very confused about what is going on. Can anyone provide some help on this?










      share|cite|improve this question











      $endgroup$




      So I am given a group $mathbb R^3$ and a group $H$ = $(y,0,0). I have to prove that that $mathbb R^3/H$ $cong$ $mathbb R^2$. I am not sure how to even begin. My difficulty is coming up with a map between the two sets. I have already verified that $H unlhd mathbb R^3$. So all I know is $mathbb R^3/H$ is a group. Also, from first isomorphism theorem, I know that the group is isomorphic to the image of the map $f: mathbb R^3 to A$, and I do not know what that $A$ is supposed to be. Today is the first day I learned about isomorphism, and I am very confused about what is going on. Can anyone provide some help on this?







      abstract-algebra group-isomorphism






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 2 mins ago









      YuiTo Cheng

      2,4064937




      2,4064937










      asked 1 hour ago









      UfomammutUfomammut

      391314




      391314




















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          The first isomorphism theorem asserts that, if $varphi: Ato B$ is a surjective homomorphism, then $Bcong A/kervarphi$. In your problem, you wish to show $mathbb R^2congmathbb R^3/H $, so a natural guess would be to take $A=mathbb R^3$ and $B=mathbb R^2$. Now it remains to construct the homomorphism so that $kervarphi=H$. I will leave the rest to you.






          share|cite|improve this answer









          $endgroup$




















            2












            $begingroup$

            We can use the first isomorphism theorem for groups here as you indicated. Consider the map $f : mathbbR^3 longrightarrow mathbbR^2$ as follows, $f(x,y,z) = (y,y+z)$. First, we show that this map is a well-defined group homomorphism and next show that $H = (y,0,0) $ is its kernel.
            If $(x_1,y_1,z_1) = (x_2,y_2,z_2)$ then $f(x_1,y_1,z_1) = f(x_2,y_2,z_2)$ hence map is well defined.
            Next we show this map is homomorphism. $f((x_1,y_1,z_1) + (x_2,y_2,z_2)) = f(x_1+x_2,y_1+y_2,z_1+z_2) = (y_1+y_2, (y_1+y_2)+(z_1+z_2)) = (y_1+y_2, (y_1+z_1)+(y_2+z_2) = (y_1,y_1+z_1) + (y_2,y_2+z_2) = f(x_1,y_1,z_1) +f(x_2,y_2,z_2). textMoreover, f(0,0,0) = (0,0)$
            The kernel of this map is seen to be all $(x,y,z) in mathbbR$ such that $y,z$ are $0$ , i.e., $H$.
            Hence first isomorphism theorem applies and $ mathbbR^3/H equiv mathbbR^2.$






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
              $endgroup$
              – Ufomammut
              47 mins ago











            • $begingroup$
              Yes, that will also work.
              $endgroup$
              – Mayank Mishra
              44 mins ago











            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3185816%2fproving-the-given-mathbb-r3-h-cong-mathbb-r2-where-h-y-0-0y%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            The first isomorphism theorem asserts that, if $varphi: Ato B$ is a surjective homomorphism, then $Bcong A/kervarphi$. In your problem, you wish to show $mathbb R^2congmathbb R^3/H $, so a natural guess would be to take $A=mathbb R^3$ and $B=mathbb R^2$. Now it remains to construct the homomorphism so that $kervarphi=H$. I will leave the rest to you.






            share|cite|improve this answer









            $endgroup$

















              3












              $begingroup$

              The first isomorphism theorem asserts that, if $varphi: Ato B$ is a surjective homomorphism, then $Bcong A/kervarphi$. In your problem, you wish to show $mathbb R^2congmathbb R^3/H $, so a natural guess would be to take $A=mathbb R^3$ and $B=mathbb R^2$. Now it remains to construct the homomorphism so that $kervarphi=H$. I will leave the rest to you.






              share|cite|improve this answer









              $endgroup$















                3












                3








                3





                $begingroup$

                The first isomorphism theorem asserts that, if $varphi: Ato B$ is a surjective homomorphism, then $Bcong A/kervarphi$. In your problem, you wish to show $mathbb R^2congmathbb R^3/H $, so a natural guess would be to take $A=mathbb R^3$ and $B=mathbb R^2$. Now it remains to construct the homomorphism so that $kervarphi=H$. I will leave the rest to you.






                share|cite|improve this answer









                $endgroup$



                The first isomorphism theorem asserts that, if $varphi: Ato B$ is a surjective homomorphism, then $Bcong A/kervarphi$. In your problem, you wish to show $mathbb R^2congmathbb R^3/H $, so a natural guess would be to take $A=mathbb R^3$ and $B=mathbb R^2$. Now it remains to construct the homomorphism so that $kervarphi=H$. I will leave the rest to you.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 55 mins ago









                lEmlEm

                3,4621921




                3,4621921





















                    2












                    $begingroup$

                    We can use the first isomorphism theorem for groups here as you indicated. Consider the map $f : mathbbR^3 longrightarrow mathbbR^2$ as follows, $f(x,y,z) = (y,y+z)$. First, we show that this map is a well-defined group homomorphism and next show that $H = (y,0,0) $ is its kernel.
                    If $(x_1,y_1,z_1) = (x_2,y_2,z_2)$ then $f(x_1,y_1,z_1) = f(x_2,y_2,z_2)$ hence map is well defined.
                    Next we show this map is homomorphism. $f((x_1,y_1,z_1) + (x_2,y_2,z_2)) = f(x_1+x_2,y_1+y_2,z_1+z_2) = (y_1+y_2, (y_1+y_2)+(z_1+z_2)) = (y_1+y_2, (y_1+z_1)+(y_2+z_2) = (y_1,y_1+z_1) + (y_2,y_2+z_2) = f(x_1,y_1,z_1) +f(x_2,y_2,z_2). textMoreover, f(0,0,0) = (0,0)$
                    The kernel of this map is seen to be all $(x,y,z) in mathbbR$ such that $y,z$ are $0$ , i.e., $H$.
                    Hence first isomorphism theorem applies and $ mathbbR^3/H equiv mathbbR^2.$






                    share|cite|improve this answer











                    $endgroup$












                    • $begingroup$
                      I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
                      $endgroup$
                      – Ufomammut
                      47 mins ago











                    • $begingroup$
                      Yes, that will also work.
                      $endgroup$
                      – Mayank Mishra
                      44 mins ago















                    2












                    $begingroup$

                    We can use the first isomorphism theorem for groups here as you indicated. Consider the map $f : mathbbR^3 longrightarrow mathbbR^2$ as follows, $f(x,y,z) = (y,y+z)$. First, we show that this map is a well-defined group homomorphism and next show that $H = (y,0,0) $ is its kernel.
                    If $(x_1,y_1,z_1) = (x_2,y_2,z_2)$ then $f(x_1,y_1,z_1) = f(x_2,y_2,z_2)$ hence map is well defined.
                    Next we show this map is homomorphism. $f((x_1,y_1,z_1) + (x_2,y_2,z_2)) = f(x_1+x_2,y_1+y_2,z_1+z_2) = (y_1+y_2, (y_1+y_2)+(z_1+z_2)) = (y_1+y_2, (y_1+z_1)+(y_2+z_2) = (y_1,y_1+z_1) + (y_2,y_2+z_2) = f(x_1,y_1,z_1) +f(x_2,y_2,z_2). textMoreover, f(0,0,0) = (0,0)$
                    The kernel of this map is seen to be all $(x,y,z) in mathbbR$ such that $y,z$ are $0$ , i.e., $H$.
                    Hence first isomorphism theorem applies and $ mathbbR^3/H equiv mathbbR^2.$






                    share|cite|improve this answer











                    $endgroup$












                    • $begingroup$
                      I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
                      $endgroup$
                      – Ufomammut
                      47 mins ago











                    • $begingroup$
                      Yes, that will also work.
                      $endgroup$
                      – Mayank Mishra
                      44 mins ago













                    2












                    2








                    2





                    $begingroup$

                    We can use the first isomorphism theorem for groups here as you indicated. Consider the map $f : mathbbR^3 longrightarrow mathbbR^2$ as follows, $f(x,y,z) = (y,y+z)$. First, we show that this map is a well-defined group homomorphism and next show that $H = (y,0,0) $ is its kernel.
                    If $(x_1,y_1,z_1) = (x_2,y_2,z_2)$ then $f(x_1,y_1,z_1) = f(x_2,y_2,z_2)$ hence map is well defined.
                    Next we show this map is homomorphism. $f((x_1,y_1,z_1) + (x_2,y_2,z_2)) = f(x_1+x_2,y_1+y_2,z_1+z_2) = (y_1+y_2, (y_1+y_2)+(z_1+z_2)) = (y_1+y_2, (y_1+z_1)+(y_2+z_2) = (y_1,y_1+z_1) + (y_2,y_2+z_2) = f(x_1,y_1,z_1) +f(x_2,y_2,z_2). textMoreover, f(0,0,0) = (0,0)$
                    The kernel of this map is seen to be all $(x,y,z) in mathbbR$ such that $y,z$ are $0$ , i.e., $H$.
                    Hence first isomorphism theorem applies and $ mathbbR^3/H equiv mathbbR^2.$






                    share|cite|improve this answer











                    $endgroup$



                    We can use the first isomorphism theorem for groups here as you indicated. Consider the map $f : mathbbR^3 longrightarrow mathbbR^2$ as follows, $f(x,y,z) = (y,y+z)$. First, we show that this map is a well-defined group homomorphism and next show that $H = (y,0,0) $ is its kernel.
                    If $(x_1,y_1,z_1) = (x_2,y_2,z_2)$ then $f(x_1,y_1,z_1) = f(x_2,y_2,z_2)$ hence map is well defined.
                    Next we show this map is homomorphism. $f((x_1,y_1,z_1) + (x_2,y_2,z_2)) = f(x_1+x_2,y_1+y_2,z_1+z_2) = (y_1+y_2, (y_1+y_2)+(z_1+z_2)) = (y_1+y_2, (y_1+z_1)+(y_2+z_2) = (y_1,y_1+z_1) + (y_2,y_2+z_2) = f(x_1,y_1,z_1) +f(x_2,y_2,z_2). textMoreover, f(0,0,0) = (0,0)$
                    The kernel of this map is seen to be all $(x,y,z) in mathbbR$ such that $y,z$ are $0$ , i.e., $H$.
                    Hence first isomorphism theorem applies and $ mathbbR^3/H equiv mathbbR^2.$







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited 30 mins ago

























                    answered 49 mins ago









                    Mayank MishraMayank Mishra

                    1068




                    1068











                    • $begingroup$
                      I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
                      $endgroup$
                      – Ufomammut
                      47 mins ago











                    • $begingroup$
                      Yes, that will also work.
                      $endgroup$
                      – Mayank Mishra
                      44 mins ago
















                    • $begingroup$
                      I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
                      $endgroup$
                      – Ufomammut
                      47 mins ago











                    • $begingroup$
                      Yes, that will also work.
                      $endgroup$
                      – Mayank Mishra
                      44 mins ago















                    $begingroup$
                    I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
                    $endgroup$
                    – Ufomammut
                    47 mins ago





                    $begingroup$
                    I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
                    $endgroup$
                    – Ufomammut
                    47 mins ago













                    $begingroup$
                    Yes, that will also work.
                    $endgroup$
                    – Mayank Mishra
                    44 mins ago




                    $begingroup$
                    Yes, that will also work.
                    $endgroup$
                    – Mayank Mishra
                    44 mins ago

















                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3185816%2fproving-the-given-mathbb-r3-h-cong-mathbb-r2-where-h-y-0-0y%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Are there any AGPL-style licences that require source code modifications to be public? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Force derivative works to be publicAre there any GPL like licenses for Apple App Store?Do you violate the GPL if you provide source code that cannot be compiled?GPL - is it distribution to use libraries in an appliance loaned to customers?Distributing App for free which uses GPL'ed codeModifications of server software under GPL, with web/CLI interfaceDoes using an AGPLv3-licensed library prevent me from dual-licensing my own source code?Can I publish only select code under GPLv3 from a private project?Is there published precedent regarding the scope of covered work that uses AGPL software?If MIT licensed code links to GPL licensed code what should be the license of the resulting binary program?If I use a public API endpoint that has its source code licensed under AGPL in my app, do I need to disclose my source?

                    2013 GY136 Descoberta | Órbita | Referências Menu de navegação«List Of Centaurs and Scattered-Disk Objects»«List of Known Trans-Neptunian Objects»

                    Button changing it's text & action. Good or terrible? The 2019 Stack Overflow Developer Survey Results Are Inchanging text on user mouseoverShould certain functions be “hard to find” for powerusers to discover?Custom liking function - do I need user login?Using different checkbox style for different checkbox behaviorBest Practices: Save and Exit in Software UIInteraction with remote validated formMore efficient UI to progress the user through a complicated process?Designing a popup notice for a gameShould bulk-editing functions be hidden until a table row is selected, or is there a better solution?Is it bad practice to disable (replace) the context menu?