Why dont electromagnetic waves interact with each other?Gravitational lensing or cloud refraction?Electromagnetic RadiationWhy don't electromagnetic waves require a medium?How do mirrors work?What is light, and how can it travel in a vacuum forever in all directions at once without a medium?Can we explain Huygens' principle taking into account Maxwell's predictions?How do electromagnetic waves travel in a vacuum?Is the wobbly rope depiction of a radio wave inherently wrong? And how do vectors of parallel waves align with each other?Electromagnetic tensor propagation?Double slit experiment and electromagnetic waves

Why are 150k or 200k jobs considered good when there are 300k+ births a month?

LaTeX closing $ signs makes cursor jump

Why does Kotter return in Welcome Back Kotter?

How did the USSR manage to innovate in an environment characterized by government censorship and high bureaucracy?

What are these boxed doors outside store fronts in New York?

Is it legal for company to use my work email to pretend I still work there?

How does strength of boric acid solution increase in presence of salicylic acid?

What is the offset in a seaplane's hull?

How to write a macro that is braces sensitive?

"to be prejudice towards/against someone" vs "to be prejudiced against/towards someone"

Is a tag line useful on a cover?

How does one intimidate enemies without having the capacity for violence?

Watching something be written to a file live with tail

Why are electrically insulating heatsinks so rare? Is it just cost?

Why not use SQL instead of GraphQL?

The use of multiple foreign keys on same column in SQL Server

Mathematical cryptic clues

Fencing style for blades that can attack from a distance

How is the claim "I am in New York only if I am in America" the same as "If I am in New York, then I am in America?

Which models of the Boeing 737 are still in production?

What is the word for reserving something for yourself before others do?

Why do falling prices hurt debtors?

Test if tikzmark exists on same page

Why doesn't H₄O²⁺ exist?



Why dont electromagnetic waves interact with each other?


Gravitational lensing or cloud refraction?Electromagnetic RadiationWhy don't electromagnetic waves require a medium?How do mirrors work?What is light, and how can it travel in a vacuum forever in all directions at once without a medium?Can we explain Huygens' principle taking into account Maxwell's predictions?How do electromagnetic waves travel in a vacuum?Is the wobbly rope depiction of a radio wave inherently wrong? And how do vectors of parallel waves align with each other?Electromagnetic tensor propagation?Double slit experiment and electromagnetic waves













1












$begingroup$


My exact question is that what refers to this phenomenon? I saw also richards feynman video in that he talks about light and says that if we look at something those ligh waves that come from that thing are not disturbed from any other electromagnetic waves and explains this kind of way that if i can see things clearly, in front of me, although if someone stand in the right of me, can also clearly see any thing in the left of me, our light waves cross each other but the are not disturbed by each other. This is a kinda cool explanation but i dont understand that exactly, because i am not convinced that if those two electromagnetic waves would interact then i couldnt see the thing in front of me clearly










share|cite|improve this question









$endgroup$
















    1












    $begingroup$


    My exact question is that what refers to this phenomenon? I saw also richards feynman video in that he talks about light and says that if we look at something those ligh waves that come from that thing are not disturbed from any other electromagnetic waves and explains this kind of way that if i can see things clearly, in front of me, although if someone stand in the right of me, can also clearly see any thing in the left of me, our light waves cross each other but the are not disturbed by each other. This is a kinda cool explanation but i dont understand that exactly, because i am not convinced that if those two electromagnetic waves would interact then i couldnt see the thing in front of me clearly










    share|cite|improve this question









    $endgroup$














      1












      1








      1


      1



      $begingroup$


      My exact question is that what refers to this phenomenon? I saw also richards feynman video in that he talks about light and says that if we look at something those ligh waves that come from that thing are not disturbed from any other electromagnetic waves and explains this kind of way that if i can see things clearly, in front of me, although if someone stand in the right of me, can also clearly see any thing in the left of me, our light waves cross each other but the are not disturbed by each other. This is a kinda cool explanation but i dont understand that exactly, because i am not convinced that if those two electromagnetic waves would interact then i couldnt see the thing in front of me clearly










      share|cite|improve this question









      $endgroup$




      My exact question is that what refers to this phenomenon? I saw also richards feynman video in that he talks about light and says that if we look at something those ligh waves that come from that thing are not disturbed from any other electromagnetic waves and explains this kind of way that if i can see things clearly, in front of me, although if someone stand in the right of me, can also clearly see any thing in the left of me, our light waves cross each other but the are not disturbed by each other. This is a kinda cool explanation but i dont understand that exactly, because i am not convinced that if those two electromagnetic waves would interact then i couldnt see the thing in front of me clearly







      electromagnetic-radiation






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 1 hour ago









      Bálint TataiBálint Tatai

      23727




      23727




















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          Here are three explanations of how to understand “why” electromagnetic waves don’t directly interact electromagnetically with each other, which are all equivalent to each other:



          1. Maxwell’s equations are linear in the electric and magnetic fields, and in their sources, so the superposition of two solutions is also a solution. (For example, in Coulomb’s Law you can just add up the fields of multiple charges.)


          2. Photons do not carry any electric charge and do not have their own electromagnetic field. (Note: By contrast, gluons do carry color charge and do interact with each other.)


          3. The gauge group for electromagnetism is an abelian (i.e., commutative) group. (Gauge groups are something you learn about in more advanced physics courses.)


          Notice that I said photons don’t directly interact with each other. They do indirectly interact via virtual electrons and positrons (or other charged particle-antiparticle pairs). Until you get to extremely intense electric and magnetic fields, this is a very tiny effect and was only recently measured.



          An even tinier effect, which we will probably never be able to detect, is the gravitational interaction of electromagnetic waves or photons. Physicists believe there would be a gravitational interaction because electromagnetic waves and photons carry energy and momentum, even though photons are massless.






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "151"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f471007%2fwhy-dont-electromagnetic-waves-interact-with-each-other%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            Here are three explanations of how to understand “why” electromagnetic waves don’t directly interact electromagnetically with each other, which are all equivalent to each other:



            1. Maxwell’s equations are linear in the electric and magnetic fields, and in their sources, so the superposition of two solutions is also a solution. (For example, in Coulomb’s Law you can just add up the fields of multiple charges.)


            2. Photons do not carry any electric charge and do not have their own electromagnetic field. (Note: By contrast, gluons do carry color charge and do interact with each other.)


            3. The gauge group for electromagnetism is an abelian (i.e., commutative) group. (Gauge groups are something you learn about in more advanced physics courses.)


            Notice that I said photons don’t directly interact with each other. They do indirectly interact via virtual electrons and positrons (or other charged particle-antiparticle pairs). Until you get to extremely intense electric and magnetic fields, this is a very tiny effect and was only recently measured.



            An even tinier effect, which we will probably never be able to detect, is the gravitational interaction of electromagnetic waves or photons. Physicists believe there would be a gravitational interaction because electromagnetic waves and photons carry energy and momentum, even though photons are massless.






            share|cite|improve this answer











            $endgroup$

















              3












              $begingroup$

              Here are three explanations of how to understand “why” electromagnetic waves don’t directly interact electromagnetically with each other, which are all equivalent to each other:



              1. Maxwell’s equations are linear in the electric and magnetic fields, and in their sources, so the superposition of two solutions is also a solution. (For example, in Coulomb’s Law you can just add up the fields of multiple charges.)


              2. Photons do not carry any electric charge and do not have their own electromagnetic field. (Note: By contrast, gluons do carry color charge and do interact with each other.)


              3. The gauge group for electromagnetism is an abelian (i.e., commutative) group. (Gauge groups are something you learn about in more advanced physics courses.)


              Notice that I said photons don’t directly interact with each other. They do indirectly interact via virtual electrons and positrons (or other charged particle-antiparticle pairs). Until you get to extremely intense electric and magnetic fields, this is a very tiny effect and was only recently measured.



              An even tinier effect, which we will probably never be able to detect, is the gravitational interaction of electromagnetic waves or photons. Physicists believe there would be a gravitational interaction because electromagnetic waves and photons carry energy and momentum, even though photons are massless.






              share|cite|improve this answer











              $endgroup$















                3












                3








                3





                $begingroup$

                Here are three explanations of how to understand “why” electromagnetic waves don’t directly interact electromagnetically with each other, which are all equivalent to each other:



                1. Maxwell’s equations are linear in the electric and magnetic fields, and in their sources, so the superposition of two solutions is also a solution. (For example, in Coulomb’s Law you can just add up the fields of multiple charges.)


                2. Photons do not carry any electric charge and do not have their own electromagnetic field. (Note: By contrast, gluons do carry color charge and do interact with each other.)


                3. The gauge group for electromagnetism is an abelian (i.e., commutative) group. (Gauge groups are something you learn about in more advanced physics courses.)


                Notice that I said photons don’t directly interact with each other. They do indirectly interact via virtual electrons and positrons (or other charged particle-antiparticle pairs). Until you get to extremely intense electric and magnetic fields, this is a very tiny effect and was only recently measured.



                An even tinier effect, which we will probably never be able to detect, is the gravitational interaction of electromagnetic waves or photons. Physicists believe there would be a gravitational interaction because electromagnetic waves and photons carry energy and momentum, even though photons are massless.






                share|cite|improve this answer











                $endgroup$



                Here are three explanations of how to understand “why” electromagnetic waves don’t directly interact electromagnetically with each other, which are all equivalent to each other:



                1. Maxwell’s equations are linear in the electric and magnetic fields, and in their sources, so the superposition of two solutions is also a solution. (For example, in Coulomb’s Law you can just add up the fields of multiple charges.)


                2. Photons do not carry any electric charge and do not have their own electromagnetic field. (Note: By contrast, gluons do carry color charge and do interact with each other.)


                3. The gauge group for electromagnetism is an abelian (i.e., commutative) group. (Gauge groups are something you learn about in more advanced physics courses.)


                Notice that I said photons don’t directly interact with each other. They do indirectly interact via virtual electrons and positrons (or other charged particle-antiparticle pairs). Until you get to extremely intense electric and magnetic fields, this is a very tiny effect and was only recently measured.



                An even tinier effect, which we will probably never be able to detect, is the gravitational interaction of electromagnetic waves or photons. Physicists believe there would be a gravitational interaction because electromagnetic waves and photons carry energy and momentum, even though photons are massless.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited 58 mins ago

























                answered 1 hour ago









                G. SmithG. Smith

                10.5k11430




                10.5k11430



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Physics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f471007%2fwhy-dont-electromagnetic-waves-interact-with-each-other%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Are there any AGPL-style licences that require source code modifications to be public? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Force derivative works to be publicAre there any GPL like licenses for Apple App Store?Do you violate the GPL if you provide source code that cannot be compiled?GPL - is it distribution to use libraries in an appliance loaned to customers?Distributing App for free which uses GPL'ed codeModifications of server software under GPL, with web/CLI interfaceDoes using an AGPLv3-licensed library prevent me from dual-licensing my own source code?Can I publish only select code under GPLv3 from a private project?Is there published precedent regarding the scope of covered work that uses AGPL software?If MIT licensed code links to GPL licensed code what should be the license of the resulting binary program?If I use a public API endpoint that has its source code licensed under AGPL in my app, do I need to disclose my source?

                    2013 GY136 Descoberta | Órbita | Referências Menu de navegação«List Of Centaurs and Scattered-Disk Objects»«List of Known Trans-Neptunian Objects»

                    Button changing it's text & action. Good or terrible? The 2019 Stack Overflow Developer Survey Results Are Inchanging text on user mouseoverShould certain functions be “hard to find” for powerusers to discover?Custom liking function - do I need user login?Using different checkbox style for different checkbox behaviorBest Practices: Save and Exit in Software UIInteraction with remote validated formMore efficient UI to progress the user through a complicated process?Designing a popup notice for a gameShould bulk-editing functions be hidden until a table row is selected, or is there a better solution?Is it bad practice to disable (replace) the context menu?