Does this property of comaximal ideals always holds?Question on Comaximal IdealsUnital commutative ring and distinct maximal ideals.Where does the proof for commutative rings break down in the non-commutative ring when showing only two ideals implies the ring is a field?Direct-Sum Decomposition of an Artinian moduleProve that $m_1m_2ldots m_r=n_1n_2ldots n_s$ implies $r=s$ for distinct maximal idealsQuestion about maximal ideals in a commutative Artinian ringA property of associated prime idealsThe meaning of idempotents corresponding the standard basis in direct product of fieldsAre non-coprime ideals always contained in some prime ideal?Product of ideals equals intersection but they are not comaximal

Does splitting a potentially monolithic application into several smaller ones help prevent bugs?

Dot in front of file

Making a sword in the stone, in a medieval world without magic

Why did it take so long to abandon sail after steamships were demonstrated?

Do I need life insurance if I can cover my own funeral costs?

Possible Leak In Concrete

Calculus II Professor will not accept my correct integral evaluation that uses a different method, should I bring this up further?

Replacing Windows 7 security updates with anti-virus?

What has been your most complicated TikZ drawing?

How to make healing in an exploration game interesting

When do we add an hyphen (-) to a complex adjective word?

Be in awe of my brilliance!

Welcoming 2019 Pi day: How to draw the letter π?

Happy pi day, everyone!

The use of "touch" and "touch on" in context

Should we release the security issues we found in our product as CVE or we can just update those on weekly release notes?

Could the Saturn V actually have launched astronauts around Venus?

What is IP squat space

Science-fiction short story where space navy wanted hospital ships and settlers had guns mounted everywhere

What are the possible solutions of the given equation?

Bash: What does "masking return values" mean?

Will a pinhole camera work with instant film?

How to deal with taxi scam when on vacation?

Why using two cd commands in bash script does not execute the second command



Does this property of comaximal ideals always holds?


Question on Comaximal IdealsUnital commutative ring and distinct maximal ideals.Where does the proof for commutative rings break down in the non-commutative ring when showing only two ideals implies the ring is a field?Direct-Sum Decomposition of an Artinian moduleProve that $m_1m_2ldots m_r=n_1n_2ldots n_s$ implies $r=s$ for distinct maximal idealsQuestion about maximal ideals in a commutative Artinian ringA property of associated prime idealsThe meaning of idempotents corresponding the standard basis in direct product of fieldsAre non-coprime ideals always contained in some prime ideal?Product of ideals equals intersection but they are not comaximal













4












$begingroup$


I am reading a paper in which the following result is used but I can’t see the proof of this.




let $R$ be a commutative ring with only two maximal ideals say $M_1$ and $M_2$. Suppose $m_1 in M_1$ be such that $m_1 notin M_2$ then can be always find $m_2 in M_2$ such that $m_1+m_2=1$




Any ideas?










share|cite|improve this question









$endgroup$











  • $begingroup$
    Consider the ideal generated by $M_2$ and $m_1$, this ideal must be $R=(1)$ since $M_2$ is maximal
    $endgroup$
    – B.Swan
    1 hour ago










  • $begingroup$
    @B.Swan this approach doesn't work, to see why try writing out the details
    $endgroup$
    – Alex Mathers
    1 hour ago






  • 1




    $begingroup$
    Set $I=(M_2 cup m_1) $, the ideal generated by $M_2$ and $m_1$. Elements of $I$ have the form $x+rm_1$, where $x in M_2$ and $r in R$. Since $m_1 notin M_2$ and $M_2$ maximal, it follows $I=R$. Thus there exists $s in R$ with $1=x+sm_1$. And I guess one gets stuck here. Sorry for the wrong approach and thanks for pointing it out.
    $endgroup$
    – B.Swan
    1 hour ago
















4












$begingroup$


I am reading a paper in which the following result is used but I can’t see the proof of this.




let $R$ be a commutative ring with only two maximal ideals say $M_1$ and $M_2$. Suppose $m_1 in M_1$ be such that $m_1 notin M_2$ then can be always find $m_2 in M_2$ such that $m_1+m_2=1$




Any ideas?










share|cite|improve this question









$endgroup$











  • $begingroup$
    Consider the ideal generated by $M_2$ and $m_1$, this ideal must be $R=(1)$ since $M_2$ is maximal
    $endgroup$
    – B.Swan
    1 hour ago










  • $begingroup$
    @B.Swan this approach doesn't work, to see why try writing out the details
    $endgroup$
    – Alex Mathers
    1 hour ago






  • 1




    $begingroup$
    Set $I=(M_2 cup m_1) $, the ideal generated by $M_2$ and $m_1$. Elements of $I$ have the form $x+rm_1$, where $x in M_2$ and $r in R$. Since $m_1 notin M_2$ and $M_2$ maximal, it follows $I=R$. Thus there exists $s in R$ with $1=x+sm_1$. And I guess one gets stuck here. Sorry for the wrong approach and thanks for pointing it out.
    $endgroup$
    – B.Swan
    1 hour ago














4












4








4





$begingroup$


I am reading a paper in which the following result is used but I can’t see the proof of this.




let $R$ be a commutative ring with only two maximal ideals say $M_1$ and $M_2$. Suppose $m_1 in M_1$ be such that $m_1 notin M_2$ then can be always find $m_2 in M_2$ such that $m_1+m_2=1$




Any ideas?










share|cite|improve this question









$endgroup$




I am reading a paper in which the following result is used but I can’t see the proof of this.




let $R$ be a commutative ring with only two maximal ideals say $M_1$ and $M_2$. Suppose $m_1 in M_1$ be such that $m_1 notin M_2$ then can be always find $m_2 in M_2$ such that $m_1+m_2=1$




Any ideas?







abstract-algebra ring-theory commutative-algebra maximal-and-prime-ideals






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 1 hour ago









Math LoverMath Lover

1,024315




1,024315











  • $begingroup$
    Consider the ideal generated by $M_2$ and $m_1$, this ideal must be $R=(1)$ since $M_2$ is maximal
    $endgroup$
    – B.Swan
    1 hour ago










  • $begingroup$
    @B.Swan this approach doesn't work, to see why try writing out the details
    $endgroup$
    – Alex Mathers
    1 hour ago






  • 1




    $begingroup$
    Set $I=(M_2 cup m_1) $, the ideal generated by $M_2$ and $m_1$. Elements of $I$ have the form $x+rm_1$, where $x in M_2$ and $r in R$. Since $m_1 notin M_2$ and $M_2$ maximal, it follows $I=R$. Thus there exists $s in R$ with $1=x+sm_1$. And I guess one gets stuck here. Sorry for the wrong approach and thanks for pointing it out.
    $endgroup$
    – B.Swan
    1 hour ago

















  • $begingroup$
    Consider the ideal generated by $M_2$ and $m_1$, this ideal must be $R=(1)$ since $M_2$ is maximal
    $endgroup$
    – B.Swan
    1 hour ago










  • $begingroup$
    @B.Swan this approach doesn't work, to see why try writing out the details
    $endgroup$
    – Alex Mathers
    1 hour ago






  • 1




    $begingroup$
    Set $I=(M_2 cup m_1) $, the ideal generated by $M_2$ and $m_1$. Elements of $I$ have the form $x+rm_1$, where $x in M_2$ and $r in R$. Since $m_1 notin M_2$ and $M_2$ maximal, it follows $I=R$. Thus there exists $s in R$ with $1=x+sm_1$. And I guess one gets stuck here. Sorry for the wrong approach and thanks for pointing it out.
    $endgroup$
    – B.Swan
    1 hour ago
















$begingroup$
Consider the ideal generated by $M_2$ and $m_1$, this ideal must be $R=(1)$ since $M_2$ is maximal
$endgroup$
– B.Swan
1 hour ago




$begingroup$
Consider the ideal generated by $M_2$ and $m_1$, this ideal must be $R=(1)$ since $M_2$ is maximal
$endgroup$
– B.Swan
1 hour ago












$begingroup$
@B.Swan this approach doesn't work, to see why try writing out the details
$endgroup$
– Alex Mathers
1 hour ago




$begingroup$
@B.Swan this approach doesn't work, to see why try writing out the details
$endgroup$
– Alex Mathers
1 hour ago




1




1




$begingroup$
Set $I=(M_2 cup m_1) $, the ideal generated by $M_2$ and $m_1$. Elements of $I$ have the form $x+rm_1$, where $x in M_2$ and $r in R$. Since $m_1 notin M_2$ and $M_2$ maximal, it follows $I=R$. Thus there exists $s in R$ with $1=x+sm_1$. And I guess one gets stuck here. Sorry for the wrong approach and thanks for pointing it out.
$endgroup$
– B.Swan
1 hour ago





$begingroup$
Set $I=(M_2 cup m_1) $, the ideal generated by $M_2$ and $m_1$. Elements of $I$ have the form $x+rm_1$, where $x in M_2$ and $r in R$. Since $m_1 notin M_2$ and $M_2$ maximal, it follows $I=R$. Thus there exists $s in R$ with $1=x+sm_1$. And I guess one gets stuck here. Sorry for the wrong approach and thanks for pointing it out.
$endgroup$
– B.Swan
1 hour ago











2 Answers
2






active

oldest

votes


















4












$begingroup$

First notice that $1-m_1$ cannot be a unit, because this would imply $m_1$ is in the Jacobson radical of $R$, and in particular we would have $m_1in M_2$.



Now it follows that the ideal of $R$ generated by $1-m_1$ must be contained in a maximal ideal, but it cannot be contained in $M_1$ because then it would follow that $1in M_1$. Thus this ideal is contained in $M_2$ (the only other maximal ideal), i.e. you get $1-m_1in M_2$.




Edit: I think my reasoning for $1-m_1$ not being a unit is wrong (it seems we would need that $1-m_1x$ is a unit for every $xin R$ to conclude $m_1$ is in the Jacobson radical). The rest of the argument goes through, so I'm going to leave my answer up for a while in hopes that somebody can help figure that part out.






share|cite|improve this answer











$endgroup$




















    0












    $begingroup$

    Take $R=mathbbQtimesmathbbQ$, $M_1=mathbbQtimes0$, $M_2=0timesmathbbQ$, and $m_1=(2,0)in M_1setminus M_2$. Then $(1,1)inmathbbQtimesmathbbQ$ satisfies that $$(1,1)-(2,0)=(-1,1)notin M_2$$



    Maybe the property that they are really using is that there exist $ain M_1$ and $bin M_2$ such that $a+b=1$. Not arbitrary $a,b$.






    share|cite|improve this answer









    $endgroup$












      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3148803%2fdoes-this-property-of-comaximal-ideals-always-holds%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      4












      $begingroup$

      First notice that $1-m_1$ cannot be a unit, because this would imply $m_1$ is in the Jacobson radical of $R$, and in particular we would have $m_1in M_2$.



      Now it follows that the ideal of $R$ generated by $1-m_1$ must be contained in a maximal ideal, but it cannot be contained in $M_1$ because then it would follow that $1in M_1$. Thus this ideal is contained in $M_2$ (the only other maximal ideal), i.e. you get $1-m_1in M_2$.




      Edit: I think my reasoning for $1-m_1$ not being a unit is wrong (it seems we would need that $1-m_1x$ is a unit for every $xin R$ to conclude $m_1$ is in the Jacobson radical). The rest of the argument goes through, so I'm going to leave my answer up for a while in hopes that somebody can help figure that part out.






      share|cite|improve this answer











      $endgroup$

















        4












        $begingroup$

        First notice that $1-m_1$ cannot be a unit, because this would imply $m_1$ is in the Jacobson radical of $R$, and in particular we would have $m_1in M_2$.



        Now it follows that the ideal of $R$ generated by $1-m_1$ must be contained in a maximal ideal, but it cannot be contained in $M_1$ because then it would follow that $1in M_1$. Thus this ideal is contained in $M_2$ (the only other maximal ideal), i.e. you get $1-m_1in M_2$.




        Edit: I think my reasoning for $1-m_1$ not being a unit is wrong (it seems we would need that $1-m_1x$ is a unit for every $xin R$ to conclude $m_1$ is in the Jacobson radical). The rest of the argument goes through, so I'm going to leave my answer up for a while in hopes that somebody can help figure that part out.






        share|cite|improve this answer











        $endgroup$















          4












          4








          4





          $begingroup$

          First notice that $1-m_1$ cannot be a unit, because this would imply $m_1$ is in the Jacobson radical of $R$, and in particular we would have $m_1in M_2$.



          Now it follows that the ideal of $R$ generated by $1-m_1$ must be contained in a maximal ideal, but it cannot be contained in $M_1$ because then it would follow that $1in M_1$. Thus this ideal is contained in $M_2$ (the only other maximal ideal), i.e. you get $1-m_1in M_2$.




          Edit: I think my reasoning for $1-m_1$ not being a unit is wrong (it seems we would need that $1-m_1x$ is a unit for every $xin R$ to conclude $m_1$ is in the Jacobson radical). The rest of the argument goes through, so I'm going to leave my answer up for a while in hopes that somebody can help figure that part out.






          share|cite|improve this answer











          $endgroup$



          First notice that $1-m_1$ cannot be a unit, because this would imply $m_1$ is in the Jacobson radical of $R$, and in particular we would have $m_1in M_2$.



          Now it follows that the ideal of $R$ generated by $1-m_1$ must be contained in a maximal ideal, but it cannot be contained in $M_1$ because then it would follow that $1in M_1$. Thus this ideal is contained in $M_2$ (the only other maximal ideal), i.e. you get $1-m_1in M_2$.




          Edit: I think my reasoning for $1-m_1$ not being a unit is wrong (it seems we would need that $1-m_1x$ is a unit for every $xin R$ to conclude $m_1$ is in the Jacobson radical). The rest of the argument goes through, so I'm going to leave my answer up for a while in hopes that somebody can help figure that part out.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 1 hour ago

























          answered 1 hour ago









          Alex MathersAlex Mathers

          11k21344




          11k21344





















              0












              $begingroup$

              Take $R=mathbbQtimesmathbbQ$, $M_1=mathbbQtimes0$, $M_2=0timesmathbbQ$, and $m_1=(2,0)in M_1setminus M_2$. Then $(1,1)inmathbbQtimesmathbbQ$ satisfies that $$(1,1)-(2,0)=(-1,1)notin M_2$$



              Maybe the property that they are really using is that there exist $ain M_1$ and $bin M_2$ such that $a+b=1$. Not arbitrary $a,b$.






              share|cite|improve this answer









              $endgroup$

















                0












                $begingroup$

                Take $R=mathbbQtimesmathbbQ$, $M_1=mathbbQtimes0$, $M_2=0timesmathbbQ$, and $m_1=(2,0)in M_1setminus M_2$. Then $(1,1)inmathbbQtimesmathbbQ$ satisfies that $$(1,1)-(2,0)=(-1,1)notin M_2$$



                Maybe the property that they are really using is that there exist $ain M_1$ and $bin M_2$ such that $a+b=1$. Not arbitrary $a,b$.






                share|cite|improve this answer









                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  Take $R=mathbbQtimesmathbbQ$, $M_1=mathbbQtimes0$, $M_2=0timesmathbbQ$, and $m_1=(2,0)in M_1setminus M_2$. Then $(1,1)inmathbbQtimesmathbbQ$ satisfies that $$(1,1)-(2,0)=(-1,1)notin M_2$$



                  Maybe the property that they are really using is that there exist $ain M_1$ and $bin M_2$ such that $a+b=1$. Not arbitrary $a,b$.






                  share|cite|improve this answer









                  $endgroup$



                  Take $R=mathbbQtimesmathbbQ$, $M_1=mathbbQtimes0$, $M_2=0timesmathbbQ$, and $m_1=(2,0)in M_1setminus M_2$. Then $(1,1)inmathbbQtimesmathbbQ$ satisfies that $$(1,1)-(2,0)=(-1,1)notin M_2$$



                  Maybe the property that they are really using is that there exist $ain M_1$ and $bin M_2$ such that $a+b=1$. Not arbitrary $a,b$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 46 mins ago









                  user647486user647486

                  211




                  211



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3148803%2fdoes-this-property-of-comaximal-ideals-always-holds%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Are there any AGPL-style licences that require source code modifications to be public? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Force derivative works to be publicAre there any GPL like licenses for Apple App Store?Do you violate the GPL if you provide source code that cannot be compiled?GPL - is it distribution to use libraries in an appliance loaned to customers?Distributing App for free which uses GPL'ed codeModifications of server software under GPL, with web/CLI interfaceDoes using an AGPLv3-licensed library prevent me from dual-licensing my own source code?Can I publish only select code under GPLv3 from a private project?Is there published precedent regarding the scope of covered work that uses AGPL software?If MIT licensed code links to GPL licensed code what should be the license of the resulting binary program?If I use a public API endpoint that has its source code licensed under AGPL in my app, do I need to disclose my source?

                      2013 GY136 Descoberta | Órbita | Referências Menu de navegação«List Of Centaurs and Scattered-Disk Objects»«List of Known Trans-Neptunian Objects»

                      Mortes em março de 2019 Referências Menu de navegação«Zhores Alferov, Nobel de Física bielorrusso, morre aos 88 anos - Ciência»«Fallece Rafael Torija, o bispo emérito de Ciudad Real»«Peter Hurford dies at 88»«Keith Flint, vocalista do The Prodigy, morre aos 49 anos»«Luke Perry, ator de 'Barrados no baile' e 'Riverdale', morre aos 52 anos»«Former Rangers and Scotland captain Eric Caldow dies, aged 84»«Morreu, aos 61 anos, a antiga lenda do wrestling King Kong Bundy»«Fallece el actor y director teatral Abraham Stavans»«In Memoriam Guillaume Faye»«Sidney Sheinberg, a Force Behind Universal and Spielberg, Is Dead at 84»«Carmine Persico, Colombo Crime Family Boss, Is Dead at 85»«Dirigent Michael Gielen gestorben»«Ciclista tricampeã mundial e prata na Rio 2016 é encontrada morta em casa aos 23 anos»«Pagan Community Notes: Raven Grimassi dies, Indianapolis pop-up event cancelled, Circle Sanctuary announces new podcast, and more!»«Hal Blaine, Wrecking Crew Drummer, Dies at 90»«Morre Coutinho, que editou dupla lendária com Pelé no Santos»«Cantor Demétrius, ídolo da Jovem Guarda, morre em SP»«Ex-presidente do Vasco, Eurico Miranda morre no Rio de Janeiro»«Bronze no Mundial de basquete de 1971, Laís Elena morre aos 76 anos»«Diretor de Corridas da F1, Charlie Whiting morre aos 66 anos às vésperas do GP da Austrália»«Morreu o cardeal Danneels, da Bélgica»«Morreu o cartoonista Augusto Cid»«Morreu a atriz Maria Isabel de Lizandra, de "Vale Tudo" e novelas da Tupi»«WS Merwin, prize-winning poet of nature, dies at 91»«Atriz Márcia Real morre em São Paulo aos 88 anos»«Mauritanie: décès de l'ancien président Mohamed Mahmoud ould Louly»«Morreu Dick Dale, o rei da surf guitar e de "Pulp Fiction"»«Falleció Víctor Genes»«João Carlos Marinho, autor de 'O Gênio do Crime', morre em SP»«Legendary Horror Director and SFX Artist John Carl Buechler Dies at 66»«Morre em Salvador a religiosa Makota Valdina»«مرگ بازیکن‌ سابق نساجی بر اثر سقوط سنگ در مازندران»«Domingos Oliveira morre no Rio»«Morre Airton Ravagniani, ex-São Paulo, Fla, Vasco, Grêmio e Sport - Notícias»«Morre o escritor Flavio Moreira da Costa»«Larry Cohen, Writer-Director of 'It's Alive' and 'Hell Up in Harlem,' Dies at 77»«Scott Walker, experimental singer-songwriter, dead at 76»«Joseph Pilato, Day of the Dead Star and Horror Favorite, Dies at 70»«Sheffield United set to pay tribute to legendary goalkeeper Ted Burgin who has died at 91»«Morre Rafael Henzel, sobrevivente de acidente aéreo da Chapecoense»«Morre Valery Bykovsky, um dos primeiros cosmonautas da União Soviética»«Agnès Varda, cineasta da Nouvelle Vague, morre aos 90 anos»«Agnès Varda, cineasta francesa, morre aos 90 anos»«Tania Mallet, James Bond Actress and Helen Mirren's Cousin, Dies at 77»e