Construct a nonabelian group of order 44 Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)The dihedral group $Vlanglealpharangle$Number of Sylow bases of a certain group of order 60Nonabelian group of order $p^3$ for odd prime $p$ and exponent $p$The only group of order $255$ is $mathbb Z_255$ ( Using Sylow and the $N/C$ Theorem)Number of elements of order $11$ in group of order $1331$Classifying groups of order $20$Construct a non-abelian group of order 75order of automorphism group of an abelian group of order 75Understanding a group of order $2^25.97^2$Understanding semidirect product for group of order 30

Assertions In A Mock Callout Test

How to create a command for the "strange m" symbol in latex?

Short story about an alien named Ushtu(?) coming from a future Earth, when ours was destroyed by a nuclear explosion

How to produce a PS1 prompt in bash or ksh93 similar to tcsh

Are Flameskulls resistant to magical piercing damage?

Married in secret, can marital status in passport be changed at a later date?

A German immigrant ancestor has a "Registration Affidavit of Alien Enemy" on file. What does that mean exactly?

If gravity precedes the formation of a solar system, where did the mass come from that caused the gravity?

lm and glm function in R

Why do people think Winterfell crypts is the safest place for women, children & old people?

Does the Pact of the Blade warlock feature allow me to customize the properties of the pact weapon I create?

Pointing to problems without suggesting solutions

Why isn't everyone flabbergasted about Bran's "gift"?

Can this water damage be explained by lack of gutters and grading issues?

How do I deal with an erroneously large refund?

Does the universe have a fixed centre of mass?

false 'Security alert' from Google - every login generates mails from 'no-reply@accounts.google.com'

Like totally amazing interchangeable sister outfit accessory swapping or whatever

When does Bran Stark remember Jamie pushing him?

Will I be more secure with my own router behind my ISP's router?

/bin/ls sorts differently than just ls

Has a Nobel Peace laureate ever been accused of war crimes?

How to ask rejected full-time candidates to apply to teach individual courses?

Help Recreating a Table



Construct a nonabelian group of order 44



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)The dihedral group $Vlanglealpharangle$Number of Sylow bases of a certain group of order 60Nonabelian group of order $p^3$ for odd prime $p$ and exponent $p$The only group of order $255$ is $mathbb Z_255$ ( Using Sylow and the $N/C$ Theorem)Number of elements of order $11$ in group of order $1331$Classifying groups of order $20$Construct a non-abelian group of order 75order of automorphism group of an abelian group of order 75Understanding a group of order $2^25.97^2$Understanding semidirect product for group of order 30










6












$begingroup$


Let $G$ be a group s.t. $|G|=44=2^211$. Using Sylow's Theorems, I have deduced that there is a unique Sylow $11$-subgroup of $G$; we shall call it $R$. Let $P$ be a Sylow $2$-subgroup of $G$. Then we have $G=Prtimes R$ and a homomorphism



$$gamma: P rightarrow Aut(R)=Aut(mathbbZ_11)cong(mathbbZ_10,+) .$$



Is this all correct so far?



So what about $gamma(p)=phi_p$ where $phi_p(r)=r^5$. I thought this because $tilde5inmathbbZ_10$ has order $4$ so the order of any element of $P$ could divide it... or something...



So I was thinking the group would be something like



$$G= langle p,r | p^4=r^11 prp^-1=r^5 rangle .$$



Any insight is greatly appreciated! Thanks! I would like to know both where I went wrong and how to do it correctly.




Did I do the above right? Identifying $mathbbZ_11$ with the additive group of $mathbbZ_10$? Or should I look at it multiplicatively, because I don't understand how that isomorphism works so it doesn't make sense to define the conjugation that makes the semi-direct product well defined based on elements of the additive group $mathbbZ_10$, but instead realize that $10 in U(mathbbZ_11)$ has order $2$ so we can have a group presentation something like:



$G = langle p, r | p^2=r^11=1 , prp^-1=r^10 rangle$



Insight appreciated!



I understand the dihedral group of the $22$-gon works now, thank you. Can somebody help me with my approach in constructing a non-abelian group of order $44$ via the methods I've been using? Thanks!










share|cite|improve this question











$endgroup$











  • $begingroup$
    I think you meant $r^11$ (r^11), not $r^11$ (r^11)
    $endgroup$
    – J. W. Tanner
    4 hours ago










  • $begingroup$
    I've taken the liberty of apply the correction J.W. Tanner mentioned, as well as a few other minor fixes.
    $endgroup$
    – Travis
    2 hours ago










  • $begingroup$
    I don’t understand the words, “because $tilde5inBbb Z_10$ has order $4$”
    $endgroup$
    – Lubin
    2 hours ago










  • $begingroup$
    Doesn't $tilde5 in mathbbZ_10$ have order $2$?
    $endgroup$
    – Peter Shor
    2 hours ago










  • $begingroup$
    And if you have a non-abelian group of order 22, isn't it easy to find one of order 44?
    $endgroup$
    – Peter Shor
    2 hours ago















6












$begingroup$


Let $G$ be a group s.t. $|G|=44=2^211$. Using Sylow's Theorems, I have deduced that there is a unique Sylow $11$-subgroup of $G$; we shall call it $R$. Let $P$ be a Sylow $2$-subgroup of $G$. Then we have $G=Prtimes R$ and a homomorphism



$$gamma: P rightarrow Aut(R)=Aut(mathbbZ_11)cong(mathbbZ_10,+) .$$



Is this all correct so far?



So what about $gamma(p)=phi_p$ where $phi_p(r)=r^5$. I thought this because $tilde5inmathbbZ_10$ has order $4$ so the order of any element of $P$ could divide it... or something...



So I was thinking the group would be something like



$$G= langle p,r | p^4=r^11 prp^-1=r^5 rangle .$$



Any insight is greatly appreciated! Thanks! I would like to know both where I went wrong and how to do it correctly.




Did I do the above right? Identifying $mathbbZ_11$ with the additive group of $mathbbZ_10$? Or should I look at it multiplicatively, because I don't understand how that isomorphism works so it doesn't make sense to define the conjugation that makes the semi-direct product well defined based on elements of the additive group $mathbbZ_10$, but instead realize that $10 in U(mathbbZ_11)$ has order $2$ so we can have a group presentation something like:



$G = langle p, r | p^2=r^11=1 , prp^-1=r^10 rangle$



Insight appreciated!



I understand the dihedral group of the $22$-gon works now, thank you. Can somebody help me with my approach in constructing a non-abelian group of order $44$ via the methods I've been using? Thanks!










share|cite|improve this question











$endgroup$











  • $begingroup$
    I think you meant $r^11$ (r^11), not $r^11$ (r^11)
    $endgroup$
    – J. W. Tanner
    4 hours ago










  • $begingroup$
    I've taken the liberty of apply the correction J.W. Tanner mentioned, as well as a few other minor fixes.
    $endgroup$
    – Travis
    2 hours ago










  • $begingroup$
    I don’t understand the words, “because $tilde5inBbb Z_10$ has order $4$”
    $endgroup$
    – Lubin
    2 hours ago










  • $begingroup$
    Doesn't $tilde5 in mathbbZ_10$ have order $2$?
    $endgroup$
    – Peter Shor
    2 hours ago










  • $begingroup$
    And if you have a non-abelian group of order 22, isn't it easy to find one of order 44?
    $endgroup$
    – Peter Shor
    2 hours ago













6












6








6


2



$begingroup$


Let $G$ be a group s.t. $|G|=44=2^211$. Using Sylow's Theorems, I have deduced that there is a unique Sylow $11$-subgroup of $G$; we shall call it $R$. Let $P$ be a Sylow $2$-subgroup of $G$. Then we have $G=Prtimes R$ and a homomorphism



$$gamma: P rightarrow Aut(R)=Aut(mathbbZ_11)cong(mathbbZ_10,+) .$$



Is this all correct so far?



So what about $gamma(p)=phi_p$ where $phi_p(r)=r^5$. I thought this because $tilde5inmathbbZ_10$ has order $4$ so the order of any element of $P$ could divide it... or something...



So I was thinking the group would be something like



$$G= langle p,r | p^4=r^11 prp^-1=r^5 rangle .$$



Any insight is greatly appreciated! Thanks! I would like to know both where I went wrong and how to do it correctly.




Did I do the above right? Identifying $mathbbZ_11$ with the additive group of $mathbbZ_10$? Or should I look at it multiplicatively, because I don't understand how that isomorphism works so it doesn't make sense to define the conjugation that makes the semi-direct product well defined based on elements of the additive group $mathbbZ_10$, but instead realize that $10 in U(mathbbZ_11)$ has order $2$ so we can have a group presentation something like:



$G = langle p, r | p^2=r^11=1 , prp^-1=r^10 rangle$



Insight appreciated!



I understand the dihedral group of the $22$-gon works now, thank you. Can somebody help me with my approach in constructing a non-abelian group of order $44$ via the methods I've been using? Thanks!










share|cite|improve this question











$endgroup$




Let $G$ be a group s.t. $|G|=44=2^211$. Using Sylow's Theorems, I have deduced that there is a unique Sylow $11$-subgroup of $G$; we shall call it $R$. Let $P$ be a Sylow $2$-subgroup of $G$. Then we have $G=Prtimes R$ and a homomorphism



$$gamma: P rightarrow Aut(R)=Aut(mathbbZ_11)cong(mathbbZ_10,+) .$$



Is this all correct so far?



So what about $gamma(p)=phi_p$ where $phi_p(r)=r^5$. I thought this because $tilde5inmathbbZ_10$ has order $4$ so the order of any element of $P$ could divide it... or something...



So I was thinking the group would be something like



$$G= langle p,r | p^4=r^11 prp^-1=r^5 rangle .$$



Any insight is greatly appreciated! Thanks! I would like to know both where I went wrong and how to do it correctly.




Did I do the above right? Identifying $mathbbZ_11$ with the additive group of $mathbbZ_10$? Or should I look at it multiplicatively, because I don't understand how that isomorphism works so it doesn't make sense to define the conjugation that makes the semi-direct product well defined based on elements of the additive group $mathbbZ_10$, but instead realize that $10 in U(mathbbZ_11)$ has order $2$ so we can have a group presentation something like:



$G = langle p, r | p^2=r^11=1 , prp^-1=r^10 rangle$



Insight appreciated!



I understand the dihedral group of the $22$-gon works now, thank you. Can somebody help me with my approach in constructing a non-abelian group of order $44$ via the methods I've been using? Thanks!







abstract-algebra group-theory sylow-theory group-presentation






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 3 hours ago









Travis

64.6k769152




64.6k769152










asked 5 hours ago









Mathematical MushroomMathematical Mushroom

22418




22418











  • $begingroup$
    I think you meant $r^11$ (r^11), not $r^11$ (r^11)
    $endgroup$
    – J. W. Tanner
    4 hours ago










  • $begingroup$
    I've taken the liberty of apply the correction J.W. Tanner mentioned, as well as a few other minor fixes.
    $endgroup$
    – Travis
    2 hours ago










  • $begingroup$
    I don’t understand the words, “because $tilde5inBbb Z_10$ has order $4$”
    $endgroup$
    – Lubin
    2 hours ago










  • $begingroup$
    Doesn't $tilde5 in mathbbZ_10$ have order $2$?
    $endgroup$
    – Peter Shor
    2 hours ago










  • $begingroup$
    And if you have a non-abelian group of order 22, isn't it easy to find one of order 44?
    $endgroup$
    – Peter Shor
    2 hours ago
















  • $begingroup$
    I think you meant $r^11$ (r^11), not $r^11$ (r^11)
    $endgroup$
    – J. W. Tanner
    4 hours ago










  • $begingroup$
    I've taken the liberty of apply the correction J.W. Tanner mentioned, as well as a few other minor fixes.
    $endgroup$
    – Travis
    2 hours ago










  • $begingroup$
    I don’t understand the words, “because $tilde5inBbb Z_10$ has order $4$”
    $endgroup$
    – Lubin
    2 hours ago










  • $begingroup$
    Doesn't $tilde5 in mathbbZ_10$ have order $2$?
    $endgroup$
    – Peter Shor
    2 hours ago










  • $begingroup$
    And if you have a non-abelian group of order 22, isn't it easy to find one of order 44?
    $endgroup$
    – Peter Shor
    2 hours ago















$begingroup$
I think you meant $r^11$ (r^11), not $r^11$ (r^11)
$endgroup$
– J. W. Tanner
4 hours ago




$begingroup$
I think you meant $r^11$ (r^11), not $r^11$ (r^11)
$endgroup$
– J. W. Tanner
4 hours ago












$begingroup$
I've taken the liberty of apply the correction J.W. Tanner mentioned, as well as a few other minor fixes.
$endgroup$
– Travis
2 hours ago




$begingroup$
I've taken the liberty of apply the correction J.W. Tanner mentioned, as well as a few other minor fixes.
$endgroup$
– Travis
2 hours ago












$begingroup$
I don’t understand the words, “because $tilde5inBbb Z_10$ has order $4$”
$endgroup$
– Lubin
2 hours ago




$begingroup$
I don’t understand the words, “because $tilde5inBbb Z_10$ has order $4$”
$endgroup$
– Lubin
2 hours ago












$begingroup$
Doesn't $tilde5 in mathbbZ_10$ have order $2$?
$endgroup$
– Peter Shor
2 hours ago




$begingroup$
Doesn't $tilde5 in mathbbZ_10$ have order $2$?
$endgroup$
– Peter Shor
2 hours ago












$begingroup$
And if you have a non-abelian group of order 22, isn't it easy to find one of order 44?
$endgroup$
– Peter Shor
2 hours ago




$begingroup$
And if you have a non-abelian group of order 22, isn't it easy to find one of order 44?
$endgroup$
– Peter Shor
2 hours ago










2 Answers
2






active

oldest

votes


















1












$begingroup$

No element of $mathbb Z_10$ has order four (why not?) and there is one element of order 2 ($5inmathbb Z_10$ under addition, $10cong -1in mathbb Z_11^x$ under multiplication.), so our possibilities are quite limited. There are two groups of order $4$, and either will work as our $R$. To give a nonabelian group, we need to pick a nontrivial homomorphism, as you pointed out.



So at least one generator of $R$ has to map to our order-two element. In the case of the Klein four group, there appear to be three possibilities, but I claim that up to an isomorphism of the Klein four group, there is only one possibility.



Actually, this exhausts the possibilities for groups of order 44: we have two abelian groups, $mathbb Z_11timesmathbbZ_4$, $mathbb Z_11times mathbbZ_2times mathbb Z_2$, and two nonabelian groups: $mathbbZ_11 rtimes mathbb Z_4 = langle a,b mid a^11, b^4, b^-1ab = a^-1rangle$ and $mathbb Z_11rtimes(mathbb Z_2 times mathbb Z_2) = langle a, b, c mid a^11, b^2, c^2, [b,c], b^-1ab = c^-1ac = a^-1 rangle$. I think the latter is $D_22$ (for 22-gon, not order of group), while the former has an element of order $4$.






share|cite|improve this answer











$endgroup$




















    0












    $begingroup$

    You're on the right track (but NB your semidirect product is written in the wrong order). To analyze the possible maps $gamma : P to operatornameAut(Bbb Z_11) cong (Bbb Z_10, +)$, we consider separately the cases $P cong Bbb Z_2 times Bbb Z_2$ and $P cong Bbb Z_4$.



    In the case $P cong Bbb Z_4$, $P$ is generated by a single element, $[1]$, of order $4$, and so $$operatornameid_Bbb Z_11 = gamma([0]) = gamma([1] + [1] + [1] + [1]) = gamma([1])^4 .$$ So, $gamma([1])$ has order dividing $4$, and the only such elements of $operatornameAut(Bbb Z_11) cong (Bbb Z_10, +)$ are $operatornameid_Bbb Z_11 leftrightarrow [0]$ and $(x mapsto -x) leftrightarrow [5]$.



    • If $gamma([1]) = operatornameid_Bbb Z_11$, then $gamma$ is the trivial homomorphism $Bbb Z_4 to operatornameAut(Bbb Z_11)$. This gives the direct product $G cong Bbb Z_11 times Bbb Z_4 cong Bbb Z_44 .$


    • If $gamma([1]) = (x mapsto -x)$, then $gamma([b])([c]) = (-1)^b [c]$, and the semidirect product $G = Bbb Z_11 rtimes_gamma Bbb Z_4$ is defined by
      $$([a], [b]) cdot ([c], [d]) = ([a] + (-1)^b [c], [b] + [d]) .$$ It's apparent from the multiplication rule that this group is nonabelian. The fact that the group is generated by $u := ([1], [0])$ and $v := ([0], [1])$ can be used to construct an explicit presentation of this group and to show that $G$ is the dicyclic group of order $44$.


    One can analyze the case $P cong Bbb Z_2 times Bbb Z_2$ similarly, and this case gives rise to two more groups up to isomorphism, namely the abelian group $Bbb Z_11 times Bbb Z_2 times Bbb Z_2$ and the (nonabelian) dihedral group $D_44 cong D_22 times Bbb Z_2$.






    share|cite|improve this answer











    $endgroup$













      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3197658%2fconstruct-a-nonabelian-group-of-order-44%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      No element of $mathbb Z_10$ has order four (why not?) and there is one element of order 2 ($5inmathbb Z_10$ under addition, $10cong -1in mathbb Z_11^x$ under multiplication.), so our possibilities are quite limited. There are two groups of order $4$, and either will work as our $R$. To give a nonabelian group, we need to pick a nontrivial homomorphism, as you pointed out.



      So at least one generator of $R$ has to map to our order-two element. In the case of the Klein four group, there appear to be three possibilities, but I claim that up to an isomorphism of the Klein four group, there is only one possibility.



      Actually, this exhausts the possibilities for groups of order 44: we have two abelian groups, $mathbb Z_11timesmathbbZ_4$, $mathbb Z_11times mathbbZ_2times mathbb Z_2$, and two nonabelian groups: $mathbbZ_11 rtimes mathbb Z_4 = langle a,b mid a^11, b^4, b^-1ab = a^-1rangle$ and $mathbb Z_11rtimes(mathbb Z_2 times mathbb Z_2) = langle a, b, c mid a^11, b^2, c^2, [b,c], b^-1ab = c^-1ac = a^-1 rangle$. I think the latter is $D_22$ (for 22-gon, not order of group), while the former has an element of order $4$.






      share|cite|improve this answer











      $endgroup$

















        1












        $begingroup$

        No element of $mathbb Z_10$ has order four (why not?) and there is one element of order 2 ($5inmathbb Z_10$ under addition, $10cong -1in mathbb Z_11^x$ under multiplication.), so our possibilities are quite limited. There are two groups of order $4$, and either will work as our $R$. To give a nonabelian group, we need to pick a nontrivial homomorphism, as you pointed out.



        So at least one generator of $R$ has to map to our order-two element. In the case of the Klein four group, there appear to be three possibilities, but I claim that up to an isomorphism of the Klein four group, there is only one possibility.



        Actually, this exhausts the possibilities for groups of order 44: we have two abelian groups, $mathbb Z_11timesmathbbZ_4$, $mathbb Z_11times mathbbZ_2times mathbb Z_2$, and two nonabelian groups: $mathbbZ_11 rtimes mathbb Z_4 = langle a,b mid a^11, b^4, b^-1ab = a^-1rangle$ and $mathbb Z_11rtimes(mathbb Z_2 times mathbb Z_2) = langle a, b, c mid a^11, b^2, c^2, [b,c], b^-1ab = c^-1ac = a^-1 rangle$. I think the latter is $D_22$ (for 22-gon, not order of group), while the former has an element of order $4$.






        share|cite|improve this answer











        $endgroup$















          1












          1








          1





          $begingroup$

          No element of $mathbb Z_10$ has order four (why not?) and there is one element of order 2 ($5inmathbb Z_10$ under addition, $10cong -1in mathbb Z_11^x$ under multiplication.), so our possibilities are quite limited. There are two groups of order $4$, and either will work as our $R$. To give a nonabelian group, we need to pick a nontrivial homomorphism, as you pointed out.



          So at least one generator of $R$ has to map to our order-two element. In the case of the Klein four group, there appear to be three possibilities, but I claim that up to an isomorphism of the Klein four group, there is only one possibility.



          Actually, this exhausts the possibilities for groups of order 44: we have two abelian groups, $mathbb Z_11timesmathbbZ_4$, $mathbb Z_11times mathbbZ_2times mathbb Z_2$, and two nonabelian groups: $mathbbZ_11 rtimes mathbb Z_4 = langle a,b mid a^11, b^4, b^-1ab = a^-1rangle$ and $mathbb Z_11rtimes(mathbb Z_2 times mathbb Z_2) = langle a, b, c mid a^11, b^2, c^2, [b,c], b^-1ab = c^-1ac = a^-1 rangle$. I think the latter is $D_22$ (for 22-gon, not order of group), while the former has an element of order $4$.






          share|cite|improve this answer











          $endgroup$



          No element of $mathbb Z_10$ has order four (why not?) and there is one element of order 2 ($5inmathbb Z_10$ under addition, $10cong -1in mathbb Z_11^x$ under multiplication.), so our possibilities are quite limited. There are two groups of order $4$, and either will work as our $R$. To give a nonabelian group, we need to pick a nontrivial homomorphism, as you pointed out.



          So at least one generator of $R$ has to map to our order-two element. In the case of the Klein four group, there appear to be three possibilities, but I claim that up to an isomorphism of the Klein four group, there is only one possibility.



          Actually, this exhausts the possibilities for groups of order 44: we have two abelian groups, $mathbb Z_11timesmathbbZ_4$, $mathbb Z_11times mathbbZ_2times mathbb Z_2$, and two nonabelian groups: $mathbbZ_11 rtimes mathbb Z_4 = langle a,b mid a^11, b^4, b^-1ab = a^-1rangle$ and $mathbb Z_11rtimes(mathbb Z_2 times mathbb Z_2) = langle a, b, c mid a^11, b^2, c^2, [b,c], b^-1ab = c^-1ac = a^-1 rangle$. I think the latter is $D_22$ (for 22-gon, not order of group), while the former has an element of order $4$.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 1 hour ago

























          answered 2 hours ago









          Rylee LymanRylee Lyman

          646211




          646211





















              0












              $begingroup$

              You're on the right track (but NB your semidirect product is written in the wrong order). To analyze the possible maps $gamma : P to operatornameAut(Bbb Z_11) cong (Bbb Z_10, +)$, we consider separately the cases $P cong Bbb Z_2 times Bbb Z_2$ and $P cong Bbb Z_4$.



              In the case $P cong Bbb Z_4$, $P$ is generated by a single element, $[1]$, of order $4$, and so $$operatornameid_Bbb Z_11 = gamma([0]) = gamma([1] + [1] + [1] + [1]) = gamma([1])^4 .$$ So, $gamma([1])$ has order dividing $4$, and the only such elements of $operatornameAut(Bbb Z_11) cong (Bbb Z_10, +)$ are $operatornameid_Bbb Z_11 leftrightarrow [0]$ and $(x mapsto -x) leftrightarrow [5]$.



              • If $gamma([1]) = operatornameid_Bbb Z_11$, then $gamma$ is the trivial homomorphism $Bbb Z_4 to operatornameAut(Bbb Z_11)$. This gives the direct product $G cong Bbb Z_11 times Bbb Z_4 cong Bbb Z_44 .$


              • If $gamma([1]) = (x mapsto -x)$, then $gamma([b])([c]) = (-1)^b [c]$, and the semidirect product $G = Bbb Z_11 rtimes_gamma Bbb Z_4$ is defined by
                $$([a], [b]) cdot ([c], [d]) = ([a] + (-1)^b [c], [b] + [d]) .$$ It's apparent from the multiplication rule that this group is nonabelian. The fact that the group is generated by $u := ([1], [0])$ and $v := ([0], [1])$ can be used to construct an explicit presentation of this group and to show that $G$ is the dicyclic group of order $44$.


              One can analyze the case $P cong Bbb Z_2 times Bbb Z_2$ similarly, and this case gives rise to two more groups up to isomorphism, namely the abelian group $Bbb Z_11 times Bbb Z_2 times Bbb Z_2$ and the (nonabelian) dihedral group $D_44 cong D_22 times Bbb Z_2$.






              share|cite|improve this answer











              $endgroup$

















                0












                $begingroup$

                You're on the right track (but NB your semidirect product is written in the wrong order). To analyze the possible maps $gamma : P to operatornameAut(Bbb Z_11) cong (Bbb Z_10, +)$, we consider separately the cases $P cong Bbb Z_2 times Bbb Z_2$ and $P cong Bbb Z_4$.



                In the case $P cong Bbb Z_4$, $P$ is generated by a single element, $[1]$, of order $4$, and so $$operatornameid_Bbb Z_11 = gamma([0]) = gamma([1] + [1] + [1] + [1]) = gamma([1])^4 .$$ So, $gamma([1])$ has order dividing $4$, and the only such elements of $operatornameAut(Bbb Z_11) cong (Bbb Z_10, +)$ are $operatornameid_Bbb Z_11 leftrightarrow [0]$ and $(x mapsto -x) leftrightarrow [5]$.



                • If $gamma([1]) = operatornameid_Bbb Z_11$, then $gamma$ is the trivial homomorphism $Bbb Z_4 to operatornameAut(Bbb Z_11)$. This gives the direct product $G cong Bbb Z_11 times Bbb Z_4 cong Bbb Z_44 .$


                • If $gamma([1]) = (x mapsto -x)$, then $gamma([b])([c]) = (-1)^b [c]$, and the semidirect product $G = Bbb Z_11 rtimes_gamma Bbb Z_4$ is defined by
                  $$([a], [b]) cdot ([c], [d]) = ([a] + (-1)^b [c], [b] + [d]) .$$ It's apparent from the multiplication rule that this group is nonabelian. The fact that the group is generated by $u := ([1], [0])$ and $v := ([0], [1])$ can be used to construct an explicit presentation of this group and to show that $G$ is the dicyclic group of order $44$.


                One can analyze the case $P cong Bbb Z_2 times Bbb Z_2$ similarly, and this case gives rise to two more groups up to isomorphism, namely the abelian group $Bbb Z_11 times Bbb Z_2 times Bbb Z_2$ and the (nonabelian) dihedral group $D_44 cong D_22 times Bbb Z_2$.






                share|cite|improve this answer











                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  You're on the right track (but NB your semidirect product is written in the wrong order). To analyze the possible maps $gamma : P to operatornameAut(Bbb Z_11) cong (Bbb Z_10, +)$, we consider separately the cases $P cong Bbb Z_2 times Bbb Z_2$ and $P cong Bbb Z_4$.



                  In the case $P cong Bbb Z_4$, $P$ is generated by a single element, $[1]$, of order $4$, and so $$operatornameid_Bbb Z_11 = gamma([0]) = gamma([1] + [1] + [1] + [1]) = gamma([1])^4 .$$ So, $gamma([1])$ has order dividing $4$, and the only such elements of $operatornameAut(Bbb Z_11) cong (Bbb Z_10, +)$ are $operatornameid_Bbb Z_11 leftrightarrow [0]$ and $(x mapsto -x) leftrightarrow [5]$.



                  • If $gamma([1]) = operatornameid_Bbb Z_11$, then $gamma$ is the trivial homomorphism $Bbb Z_4 to operatornameAut(Bbb Z_11)$. This gives the direct product $G cong Bbb Z_11 times Bbb Z_4 cong Bbb Z_44 .$


                  • If $gamma([1]) = (x mapsto -x)$, then $gamma([b])([c]) = (-1)^b [c]$, and the semidirect product $G = Bbb Z_11 rtimes_gamma Bbb Z_4$ is defined by
                    $$([a], [b]) cdot ([c], [d]) = ([a] + (-1)^b [c], [b] + [d]) .$$ It's apparent from the multiplication rule that this group is nonabelian. The fact that the group is generated by $u := ([1], [0])$ and $v := ([0], [1])$ can be used to construct an explicit presentation of this group and to show that $G$ is the dicyclic group of order $44$.


                  One can analyze the case $P cong Bbb Z_2 times Bbb Z_2$ similarly, and this case gives rise to two more groups up to isomorphism, namely the abelian group $Bbb Z_11 times Bbb Z_2 times Bbb Z_2$ and the (nonabelian) dihedral group $D_44 cong D_22 times Bbb Z_2$.






                  share|cite|improve this answer











                  $endgroup$



                  You're on the right track (but NB your semidirect product is written in the wrong order). To analyze the possible maps $gamma : P to operatornameAut(Bbb Z_11) cong (Bbb Z_10, +)$, we consider separately the cases $P cong Bbb Z_2 times Bbb Z_2$ and $P cong Bbb Z_4$.



                  In the case $P cong Bbb Z_4$, $P$ is generated by a single element, $[1]$, of order $4$, and so $$operatornameid_Bbb Z_11 = gamma([0]) = gamma([1] + [1] + [1] + [1]) = gamma([1])^4 .$$ So, $gamma([1])$ has order dividing $4$, and the only such elements of $operatornameAut(Bbb Z_11) cong (Bbb Z_10, +)$ are $operatornameid_Bbb Z_11 leftrightarrow [0]$ and $(x mapsto -x) leftrightarrow [5]$.



                  • If $gamma([1]) = operatornameid_Bbb Z_11$, then $gamma$ is the trivial homomorphism $Bbb Z_4 to operatornameAut(Bbb Z_11)$. This gives the direct product $G cong Bbb Z_11 times Bbb Z_4 cong Bbb Z_44 .$


                  • If $gamma([1]) = (x mapsto -x)$, then $gamma([b])([c]) = (-1)^b [c]$, and the semidirect product $G = Bbb Z_11 rtimes_gamma Bbb Z_4$ is defined by
                    $$([a], [b]) cdot ([c], [d]) = ([a] + (-1)^b [c], [b] + [d]) .$$ It's apparent from the multiplication rule that this group is nonabelian. The fact that the group is generated by $u := ([1], [0])$ and $v := ([0], [1])$ can be used to construct an explicit presentation of this group and to show that $G$ is the dicyclic group of order $44$.


                  One can analyze the case $P cong Bbb Z_2 times Bbb Z_2$ similarly, and this case gives rise to two more groups up to isomorphism, namely the abelian group $Bbb Z_11 times Bbb Z_2 times Bbb Z_2$ and the (nonabelian) dihedral group $D_44 cong D_22 times Bbb Z_2$.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited 1 hour ago

























                  answered 1 hour ago









                  TravisTravis

                  64.6k769152




                  64.6k769152



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3197658%2fconstruct-a-nonabelian-group-of-order-44%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Are there any AGPL-style licences that require source code modifications to be public? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Force derivative works to be publicAre there any GPL like licenses for Apple App Store?Do you violate the GPL if you provide source code that cannot be compiled?GPL - is it distribution to use libraries in an appliance loaned to customers?Distributing App for free which uses GPL'ed codeModifications of server software under GPL, with web/CLI interfaceDoes using an AGPLv3-licensed library prevent me from dual-licensing my own source code?Can I publish only select code under GPLv3 from a private project?Is there published precedent regarding the scope of covered work that uses AGPL software?If MIT licensed code links to GPL licensed code what should be the license of the resulting binary program?If I use a public API endpoint that has its source code licensed under AGPL in my app, do I need to disclose my source?

                      2013 GY136 Descoberta | Órbita | Referências Menu de navegação«List Of Centaurs and Scattered-Disk Objects»«List of Known Trans-Neptunian Objects»

                      Metrô de Los Teques Índice Linhas | Estações | Ver também | Referências Ligações externas | Menu de navegação«INSTITUCIÓN»«Mapa de rutas»originalMetrô de Los TequesC.A. Metro Los Teques |Alcaldía de Guaicaipuro – Sitio OficialGobernacion de Mirandaeeeeeee