prime numbers and expressing non-prime numbers Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Expressing a Non Negative Integer as Sums of Two SquaresAre all prime numbers finite?How can can you write a prime number as a product of prime numbers?Who generates the prime numbers for encryption?In Fermat's little theorem, if mod is not prime?Prime numbers like 113Non-unique prime factorisationWhy are all non-prime numbers divisible by a prime number?Generating Prime Numbers From Composite NumbersAlternate definition of prime numbers

Why are there no cargo aircraft with "flying wing" design?

How come Sam didn't become Lord of Horn Hill?

Using et al. for a last / senior author rather than for a first author

Is the Standard Deduction better than Itemized when both are the same amount?

How widely used is the term Treppenwitz? Is it something that most Germans know?

Storing hydrofluoric acid before the invention of plastics

Book where humans were engineered with genes from animal species to survive hostile planets

Why is my conclusion inconsistent with the van't Hoff equation?

Generate an RGB colour grid

Are two submodules (where one is contained in the other) isomorphic if their quotientmodules are isomorphic?

Denied boarding although I have proper visa and documentation. To whom should I make a complaint?

Why didn't this character "real die" when they blew their stack out in Altered Carbon?

English words in a non-english sci-fi novel

How to deal with a team lead who never gives me credit?

prime numbers and expressing non-prime numbers

What does the word "veer" mean here?

What is the role of the transistor and diode in a soft start circuit?

What would be the ideal power source for a cybernetic eye?

Output the ŋarâþ crîþ alphabet song without using (m)any letters

What's the meaning of 間時肆拾貳 at a car parking sign

What's the purpose of writing one's academic biography in the third person?

Why was the term "discrete" used in discrete logarithm?

Is it ethical to give a final exam after the professor has quit before teaching the remaining chapters of the course?

ListPlot join points by nearest neighbor rather than order



prime numbers and expressing non-prime numbers



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Expressing a Non Negative Integer as Sums of Two SquaresAre all prime numbers finite?How can can you write a prime number as a product of prime numbers?Who generates the prime numbers for encryption?In Fermat's little theorem, if mod is not prime?Prime numbers like 113Non-unique prime factorisationWhy are all non-prime numbers divisible by a prime number?Generating Prime Numbers From Composite NumbersAlternate definition of prime numbers










2












$begingroup$


My textbook says if $b$ is a non-prime number then it can be expressed as a product of prime numbers. But if $1$ isn't prime how it can be expressed as a product of prime numbers?










share|cite|improve this question











$endgroup$







  • 5




    $begingroup$
    An empty product is still a product.
    $endgroup$
    – lulu
    4 hours ago






  • 1




    $begingroup$
    The standard modern day view is that the number 1 is neither prime nor composite.
    $endgroup$
    – Martin Hansen
    4 hours ago















2












$begingroup$


My textbook says if $b$ is a non-prime number then it can be expressed as a product of prime numbers. But if $1$ isn't prime how it can be expressed as a product of prime numbers?










share|cite|improve this question











$endgroup$







  • 5




    $begingroup$
    An empty product is still a product.
    $endgroup$
    – lulu
    4 hours ago






  • 1




    $begingroup$
    The standard modern day view is that the number 1 is neither prime nor composite.
    $endgroup$
    – Martin Hansen
    4 hours ago













2












2








2





$begingroup$


My textbook says if $b$ is a non-prime number then it can be expressed as a product of prime numbers. But if $1$ isn't prime how it can be expressed as a product of prime numbers?










share|cite|improve this question











$endgroup$




My textbook says if $b$ is a non-prime number then it can be expressed as a product of prime numbers. But if $1$ isn't prime how it can be expressed as a product of prime numbers?







number-theory elementary-number-theory prime-numbers






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 hours ago









Mr. Brooks

22211338




22211338










asked 4 hours ago









Ahmed M. ElsonbatyAhmed M. Elsonbaty

624




624







  • 5




    $begingroup$
    An empty product is still a product.
    $endgroup$
    – lulu
    4 hours ago






  • 1




    $begingroup$
    The standard modern day view is that the number 1 is neither prime nor composite.
    $endgroup$
    – Martin Hansen
    4 hours ago












  • 5




    $begingroup$
    An empty product is still a product.
    $endgroup$
    – lulu
    4 hours ago






  • 1




    $begingroup$
    The standard modern day view is that the number 1 is neither prime nor composite.
    $endgroup$
    – Martin Hansen
    4 hours ago







5




5




$begingroup$
An empty product is still a product.
$endgroup$
– lulu
4 hours ago




$begingroup$
An empty product is still a product.
$endgroup$
– lulu
4 hours ago




1




1




$begingroup$
The standard modern day view is that the number 1 is neither prime nor composite.
$endgroup$
– Martin Hansen
4 hours ago




$begingroup$
The standard modern day view is that the number 1 is neither prime nor composite.
$endgroup$
– Martin Hansen
4 hours ago










3 Answers
3






active

oldest

votes


















1












$begingroup$

"In number theory, the fundamental theorem of arithmetic, also called the unique factorization theorem or the unique-prime-factorization theorem, states that every integer greater than 1 either is a prime number itself or can be represented as the product of prime numbers and that, moreover, this representation is unique, up to (except for) the order of the factors."



Your error lies in stating the fundamental theorem of arithmetic incorrectly.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    What about non-UFDs? 1 is still not prime in those, so FTA does not apply, and the asker didn't even bring up the FTA.
    $endgroup$
    – Mr. Brooks
    3 hours ago










  • $begingroup$
    I assumed that their textbook meant the FTA and they accepted my answer, what is the problem?
    $endgroup$
    – Peter Foreman
    3 hours ago






  • 1




    $begingroup$
    There is no problem at all if you treat this website as a competition for points.
    $endgroup$
    – Mr. Brooks
    3 hours ago


















2












$begingroup$

This is mainly just an extended comment on Peter Foreman's answer. The (relatively difficult) uniqueness aspect of the Fundamental Theorem of Arithmetic is not needed for the OP's question, just the (easier) existence aspect.



What's missing from the OP's textbook is the qualifier in the correct assertion that every non-prime number greater than $1$ can be expressed as a product of primes. This is the existence aspect of FTA, and it can be proved by strong induction: If $ngt1$ is not a prime, then $n=ab$ for some pair of integers with $1lt a,b$. Both $a$ and $b$ must be less than $n$ (otherwise their product would be more than $n$), so we can assume, by strong induction, that each of them can be written as a product of primes, hence so can their product, which is $n$.



Remark: "Strong" induction means that you don't just assume an assertion is true for $n-1$ and then prove it for $n$, you assume it's true for all positive integers $klt n$. In this case the assertion is "if $kgt1$ and $k$ is non-prime, then $k$ can be written as a product of primes." Note that the base case, $k=1$, is vacuously true, because $1$ is not greater than $1$.






share|cite|improve this answer









$endgroup$




















    1












    $begingroup$

    What is the sum of no numbers at all? Zero, of course, since it is the additive identity: $x + 0 = 0$, where $x neq 0$, or even if it is.



    Now, what is the product of no numbers at all? It can't be zero, since, maintaining the stipulation that $x neq 0$, we have $x times 0 = 0$, and we said $x neq 0$. The multiplicative identity is $1$, since $x times 1 = 1$.



    Hence, the product of no primes at all is $1$. The fundamental theorem of arithmetic is a subtlety that's unnecessary for answering your question.






    share|cite|improve this answer









    $endgroup$













      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3190287%2fprime-numbers-and-expressing-non-prime-numbers%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      "In number theory, the fundamental theorem of arithmetic, also called the unique factorization theorem or the unique-prime-factorization theorem, states that every integer greater than 1 either is a prime number itself or can be represented as the product of prime numbers and that, moreover, this representation is unique, up to (except for) the order of the factors."



      Your error lies in stating the fundamental theorem of arithmetic incorrectly.






      share|cite|improve this answer









      $endgroup$












      • $begingroup$
        What about non-UFDs? 1 is still not prime in those, so FTA does not apply, and the asker didn't even bring up the FTA.
        $endgroup$
        – Mr. Brooks
        3 hours ago










      • $begingroup$
        I assumed that their textbook meant the FTA and they accepted my answer, what is the problem?
        $endgroup$
        – Peter Foreman
        3 hours ago






      • 1




        $begingroup$
        There is no problem at all if you treat this website as a competition for points.
        $endgroup$
        – Mr. Brooks
        3 hours ago















      1












      $begingroup$

      "In number theory, the fundamental theorem of arithmetic, also called the unique factorization theorem or the unique-prime-factorization theorem, states that every integer greater than 1 either is a prime number itself or can be represented as the product of prime numbers and that, moreover, this representation is unique, up to (except for) the order of the factors."



      Your error lies in stating the fundamental theorem of arithmetic incorrectly.






      share|cite|improve this answer









      $endgroup$












      • $begingroup$
        What about non-UFDs? 1 is still not prime in those, so FTA does not apply, and the asker didn't even bring up the FTA.
        $endgroup$
        – Mr. Brooks
        3 hours ago










      • $begingroup$
        I assumed that their textbook meant the FTA and they accepted my answer, what is the problem?
        $endgroup$
        – Peter Foreman
        3 hours ago






      • 1




        $begingroup$
        There is no problem at all if you treat this website as a competition for points.
        $endgroup$
        – Mr. Brooks
        3 hours ago













      1












      1








      1





      $begingroup$

      "In number theory, the fundamental theorem of arithmetic, also called the unique factorization theorem or the unique-prime-factorization theorem, states that every integer greater than 1 either is a prime number itself or can be represented as the product of prime numbers and that, moreover, this representation is unique, up to (except for) the order of the factors."



      Your error lies in stating the fundamental theorem of arithmetic incorrectly.






      share|cite|improve this answer









      $endgroup$



      "In number theory, the fundamental theorem of arithmetic, also called the unique factorization theorem or the unique-prime-factorization theorem, states that every integer greater than 1 either is a prime number itself or can be represented as the product of prime numbers and that, moreover, this representation is unique, up to (except for) the order of the factors."



      Your error lies in stating the fundamental theorem of arithmetic incorrectly.







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered 4 hours ago









      Peter ForemanPeter Foreman

      7,8751320




      7,8751320











      • $begingroup$
        What about non-UFDs? 1 is still not prime in those, so FTA does not apply, and the asker didn't even bring up the FTA.
        $endgroup$
        – Mr. Brooks
        3 hours ago










      • $begingroup$
        I assumed that their textbook meant the FTA and they accepted my answer, what is the problem?
        $endgroup$
        – Peter Foreman
        3 hours ago






      • 1




        $begingroup$
        There is no problem at all if you treat this website as a competition for points.
        $endgroup$
        – Mr. Brooks
        3 hours ago
















      • $begingroup$
        What about non-UFDs? 1 is still not prime in those, so FTA does not apply, and the asker didn't even bring up the FTA.
        $endgroup$
        – Mr. Brooks
        3 hours ago










      • $begingroup$
        I assumed that their textbook meant the FTA and they accepted my answer, what is the problem?
        $endgroup$
        – Peter Foreman
        3 hours ago






      • 1




        $begingroup$
        There is no problem at all if you treat this website as a competition for points.
        $endgroup$
        – Mr. Brooks
        3 hours ago















      $begingroup$
      What about non-UFDs? 1 is still not prime in those, so FTA does not apply, and the asker didn't even bring up the FTA.
      $endgroup$
      – Mr. Brooks
      3 hours ago




      $begingroup$
      What about non-UFDs? 1 is still not prime in those, so FTA does not apply, and the asker didn't even bring up the FTA.
      $endgroup$
      – Mr. Brooks
      3 hours ago












      $begingroup$
      I assumed that their textbook meant the FTA and they accepted my answer, what is the problem?
      $endgroup$
      – Peter Foreman
      3 hours ago




      $begingroup$
      I assumed that their textbook meant the FTA and they accepted my answer, what is the problem?
      $endgroup$
      – Peter Foreman
      3 hours ago




      1




      1




      $begingroup$
      There is no problem at all if you treat this website as a competition for points.
      $endgroup$
      – Mr. Brooks
      3 hours ago




      $begingroup$
      There is no problem at all if you treat this website as a competition for points.
      $endgroup$
      – Mr. Brooks
      3 hours ago











      2












      $begingroup$

      This is mainly just an extended comment on Peter Foreman's answer. The (relatively difficult) uniqueness aspect of the Fundamental Theorem of Arithmetic is not needed for the OP's question, just the (easier) existence aspect.



      What's missing from the OP's textbook is the qualifier in the correct assertion that every non-prime number greater than $1$ can be expressed as a product of primes. This is the existence aspect of FTA, and it can be proved by strong induction: If $ngt1$ is not a prime, then $n=ab$ for some pair of integers with $1lt a,b$. Both $a$ and $b$ must be less than $n$ (otherwise their product would be more than $n$), so we can assume, by strong induction, that each of them can be written as a product of primes, hence so can their product, which is $n$.



      Remark: "Strong" induction means that you don't just assume an assertion is true for $n-1$ and then prove it for $n$, you assume it's true for all positive integers $klt n$. In this case the assertion is "if $kgt1$ and $k$ is non-prime, then $k$ can be written as a product of primes." Note that the base case, $k=1$, is vacuously true, because $1$ is not greater than $1$.






      share|cite|improve this answer









      $endgroup$

















        2












        $begingroup$

        This is mainly just an extended comment on Peter Foreman's answer. The (relatively difficult) uniqueness aspect of the Fundamental Theorem of Arithmetic is not needed for the OP's question, just the (easier) existence aspect.



        What's missing from the OP's textbook is the qualifier in the correct assertion that every non-prime number greater than $1$ can be expressed as a product of primes. This is the existence aspect of FTA, and it can be proved by strong induction: If $ngt1$ is not a prime, then $n=ab$ for some pair of integers with $1lt a,b$. Both $a$ and $b$ must be less than $n$ (otherwise their product would be more than $n$), so we can assume, by strong induction, that each of them can be written as a product of primes, hence so can their product, which is $n$.



        Remark: "Strong" induction means that you don't just assume an assertion is true for $n-1$ and then prove it for $n$, you assume it's true for all positive integers $klt n$. In this case the assertion is "if $kgt1$ and $k$ is non-prime, then $k$ can be written as a product of primes." Note that the base case, $k=1$, is vacuously true, because $1$ is not greater than $1$.






        share|cite|improve this answer









        $endgroup$















          2












          2








          2





          $begingroup$

          This is mainly just an extended comment on Peter Foreman's answer. The (relatively difficult) uniqueness aspect of the Fundamental Theorem of Arithmetic is not needed for the OP's question, just the (easier) existence aspect.



          What's missing from the OP's textbook is the qualifier in the correct assertion that every non-prime number greater than $1$ can be expressed as a product of primes. This is the existence aspect of FTA, and it can be proved by strong induction: If $ngt1$ is not a prime, then $n=ab$ for some pair of integers with $1lt a,b$. Both $a$ and $b$ must be less than $n$ (otherwise their product would be more than $n$), so we can assume, by strong induction, that each of them can be written as a product of primes, hence so can their product, which is $n$.



          Remark: "Strong" induction means that you don't just assume an assertion is true for $n-1$ and then prove it for $n$, you assume it's true for all positive integers $klt n$. In this case the assertion is "if $kgt1$ and $k$ is non-prime, then $k$ can be written as a product of primes." Note that the base case, $k=1$, is vacuously true, because $1$ is not greater than $1$.






          share|cite|improve this answer









          $endgroup$



          This is mainly just an extended comment on Peter Foreman's answer. The (relatively difficult) uniqueness aspect of the Fundamental Theorem of Arithmetic is not needed for the OP's question, just the (easier) existence aspect.



          What's missing from the OP's textbook is the qualifier in the correct assertion that every non-prime number greater than $1$ can be expressed as a product of primes. This is the existence aspect of FTA, and it can be proved by strong induction: If $ngt1$ is not a prime, then $n=ab$ for some pair of integers with $1lt a,b$. Both $a$ and $b$ must be less than $n$ (otherwise their product would be more than $n$), so we can assume, by strong induction, that each of them can be written as a product of primes, hence so can their product, which is $n$.



          Remark: "Strong" induction means that you don't just assume an assertion is true for $n-1$ and then prove it for $n$, you assume it's true for all positive integers $klt n$. In this case the assertion is "if $kgt1$ and $k$ is non-prime, then $k$ can be written as a product of primes." Note that the base case, $k=1$, is vacuously true, because $1$ is not greater than $1$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 2 hours ago









          Barry CipraBarry Cipra

          60.7k655129




          60.7k655129





















              1












              $begingroup$

              What is the sum of no numbers at all? Zero, of course, since it is the additive identity: $x + 0 = 0$, where $x neq 0$, or even if it is.



              Now, what is the product of no numbers at all? It can't be zero, since, maintaining the stipulation that $x neq 0$, we have $x times 0 = 0$, and we said $x neq 0$. The multiplicative identity is $1$, since $x times 1 = 1$.



              Hence, the product of no primes at all is $1$. The fundamental theorem of arithmetic is a subtlety that's unnecessary for answering your question.






              share|cite|improve this answer









              $endgroup$

















                1












                $begingroup$

                What is the sum of no numbers at all? Zero, of course, since it is the additive identity: $x + 0 = 0$, where $x neq 0$, or even if it is.



                Now, what is the product of no numbers at all? It can't be zero, since, maintaining the stipulation that $x neq 0$, we have $x times 0 = 0$, and we said $x neq 0$. The multiplicative identity is $1$, since $x times 1 = 1$.



                Hence, the product of no primes at all is $1$. The fundamental theorem of arithmetic is a subtlety that's unnecessary for answering your question.






                share|cite|improve this answer









                $endgroup$















                  1












                  1








                  1





                  $begingroup$

                  What is the sum of no numbers at all? Zero, of course, since it is the additive identity: $x + 0 = 0$, where $x neq 0$, or even if it is.



                  Now, what is the product of no numbers at all? It can't be zero, since, maintaining the stipulation that $x neq 0$, we have $x times 0 = 0$, and we said $x neq 0$. The multiplicative identity is $1$, since $x times 1 = 1$.



                  Hence, the product of no primes at all is $1$. The fundamental theorem of arithmetic is a subtlety that's unnecessary for answering your question.






                  share|cite|improve this answer









                  $endgroup$



                  What is the sum of no numbers at all? Zero, of course, since it is the additive identity: $x + 0 = 0$, where $x neq 0$, or even if it is.



                  Now, what is the product of no numbers at all? It can't be zero, since, maintaining the stipulation that $x neq 0$, we have $x times 0 = 0$, and we said $x neq 0$. The multiplicative identity is $1$, since $x times 1 = 1$.



                  Hence, the product of no primes at all is $1$. The fundamental theorem of arithmetic is a subtlety that's unnecessary for answering your question.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 3 hours ago









                  Mr. BrooksMr. Brooks

                  22211338




                  22211338



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3190287%2fprime-numbers-and-expressing-non-prime-numbers%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Are there any AGPL-style licences that require source code modifications to be public? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Force derivative works to be publicAre there any GPL like licenses for Apple App Store?Do you violate the GPL if you provide source code that cannot be compiled?GPL - is it distribution to use libraries in an appliance loaned to customers?Distributing App for free which uses GPL'ed codeModifications of server software under GPL, with web/CLI interfaceDoes using an AGPLv3-licensed library prevent me from dual-licensing my own source code?Can I publish only select code under GPLv3 from a private project?Is there published precedent regarding the scope of covered work that uses AGPL software?If MIT licensed code links to GPL licensed code what should be the license of the resulting binary program?If I use a public API endpoint that has its source code licensed under AGPL in my app, do I need to disclose my source?

                      2013 GY136 Descoberta | Órbita | Referências Menu de navegação«List Of Centaurs and Scattered-Disk Objects»«List of Known Trans-Neptunian Objects»

                      Button changing it's text & action. Good or terrible? The 2019 Stack Overflow Developer Survey Results Are Inchanging text on user mouseoverShould certain functions be “hard to find” for powerusers to discover?Custom liking function - do I need user login?Using different checkbox style for different checkbox behaviorBest Practices: Save and Exit in Software UIInteraction with remote validated formMore efficient UI to progress the user through a complicated process?Designing a popup notice for a gameShould bulk-editing functions be hidden until a table row is selected, or is there a better solution?Is it bad practice to disable (replace) the context menu?