Proof involving the spectral radius and the Jordan canonical form Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Spectral radius of the Volterra operatorExample that the Jordan canonical form is not “robust.”The unit vector in the direction of uWhat is the purpose of Jordan Canonical Form?Confusion between spectral radius of matrix and spectral radius of the operatorComputing the Jordan Form of a MatrixSpectral radius of perturbed bipartite graphsA proof involving invertible $ntimes n$ matricesProof of Gelfand's formula without using $rho(A) < 1$ iff $lim A^n = 0$Computing Canonical Jordan Form over a field $mathbbQ$

Why one of virtual NICs called bond0?

How to find all the available tools in macOS terminal?

Can inflation occur in a positive-sum game currency system such as the Stack Exchange reputation system?

Do I really need recursive chmod to restrict access to a folder?

ListPlot join points by nearest neighbor rather than order

Disable hyphenation for an entire paragraph

What is the longest distance a 13th-level monk can jump while attacking on the same turn?

3 doors, three guards, one stone

I am not a queen, who am I?

Did Xerox really develop the first LAN?

What are the pros and cons of Aerospike nosecones?

How can I make names more distinctive without making them longer?

How can I fade player when goes inside or outside of the area?

Stars Make Stars

G-Code for resetting to 100% speed

Is there a service that would inform me whenever a new direct route is scheduled from a given airport?

Is there a concise way to say "all of the X, one of each"?

Models of set theory where not every set can be linearly ordered

Does surprise arrest existing movement?

If Jon Snow became King of the Seven Kingdoms what would his regnal number be?

When is phishing education going too far?

Gastric acid as a weapon

Why constant symbols in a language?

What do you call a plan that's an alternative plan in case your initial plan fails?



Proof involving the spectral radius and the Jordan canonical form



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Spectral radius of the Volterra operatorExample that the Jordan canonical form is not “robust.”The unit vector in the direction of uWhat is the purpose of Jordan Canonical Form?Confusion between spectral radius of matrix and spectral radius of the operatorComputing the Jordan Form of a MatrixSpectral radius of perturbed bipartite graphsA proof involving invertible $ntimes n$ matricesProof of Gelfand's formula without using $rho(A) < 1$ iff $lim A^n = 0$Computing Canonical Jordan Form over a field $mathbbQ$










2












$begingroup$



Let $A$ be a square matrix. Show that if $$lim_n to infty A^n = 0$$ then $rho(A) < 1$, where $rho(A)$ denotes the spectral radius of $A$.



Hint: Use the Jordan canonical form.




I am self-studying and have been working through a few linear algebra exercises. I'm struggling a bit in applying the hint to this problem — I don't know where to start. Any help appreciated.










share|cite|improve this question











$endgroup$
















    2












    $begingroup$



    Let $A$ be a square matrix. Show that if $$lim_n to infty A^n = 0$$ then $rho(A) < 1$, where $rho(A)$ denotes the spectral radius of $A$.



    Hint: Use the Jordan canonical form.




    I am self-studying and have been working through a few linear algebra exercises. I'm struggling a bit in applying the hint to this problem — I don't know where to start. Any help appreciated.










    share|cite|improve this question











    $endgroup$














      2












      2








      2





      $begingroup$



      Let $A$ be a square matrix. Show that if $$lim_n to infty A^n = 0$$ then $rho(A) < 1$, where $rho(A)$ denotes the spectral radius of $A$.



      Hint: Use the Jordan canonical form.




      I am self-studying and have been working through a few linear algebra exercises. I'm struggling a bit in applying the hint to this problem — I don't know where to start. Any help appreciated.










      share|cite|improve this question











      $endgroup$





      Let $A$ be a square matrix. Show that if $$lim_n to infty A^n = 0$$ then $rho(A) < 1$, where $rho(A)$ denotes the spectral radius of $A$.



      Hint: Use the Jordan canonical form.




      I am self-studying and have been working through a few linear algebra exercises. I'm struggling a bit in applying the hint to this problem — I don't know where to start. Any help appreciated.







      linear-algebra matrices jordan-normal-form spectral-radius






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 28 mins ago









      Rodrigo de Azevedo

      13.2k41961




      13.2k41961










      asked 1 hour ago









      mXdXmXdX

      1068




      1068




















          2 Answers
          2






          active

          oldest

          votes


















          5












          $begingroup$

          You don't really need Jordan canonical form. If $rho(A) ge 1$, $A$ has an eigenvalue $lambda$ with $|lambda| ge 1$. That eigenvalue has an eigenvector $v$. Then $A^n v = lambda^n v$, so $|A^n v| = |lambda|^n |v| ge |v|$ does not go to $0$ as $n to infty$, which is impossible if $A^n to 0$.






          share|cite|improve this answer









          $endgroup$




















            2












            $begingroup$

            Hint



            $$A=PJP^-1 \
            J=beginbmatrix
            lambda_1 & * & 0 & 0 & 0 & ... & 0 \
            0& lambda_2 & * & 0 & 0 & ... & 0 \
            ...&...&...&...&....&....&....\
            0 & 0 & 0 & 0&0&...&lambda_n \
            endbmatrix$$

            where each $*$ is either $0$ or $1$.



            Prove by induction that
            $$J^m=beginbmatrix
            lambda_1^m & star & star & star & star & ... & star \
            0& lambda_2^m & star & star & star & ... & star \
            ...&...&...&...&....&....&....\
            0 & 0 & 0 & 0&0&...&lambda_n^m \
            endbmatrix$$

            where the $star$s represent numbers, that is $J^m$ is an upper triangular matrix
            with the $m$^th powers of the eigenvalues on the diagonal.



            Note The above claim for $J^m$ is not fully using that $J$ is a Jordan cannonical form. It only uses that $J$ is upper triangular.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              So, $A^m = PJ^mP^-1$. If I can show what you're asking by induction, would the limit of $J^m = 0$? I'm sure it is because the diagonal entries are less than one, right?
              $endgroup$
              – mXdX
              1 hour ago










            • $begingroup$
              @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^-1 A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
              $endgroup$
              – N. S.
              1 hour ago










            • $begingroup$
              I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^m$ are the $m$th powers of the eigenvalues.
              $endgroup$
              – mXdX
              1 hour ago











            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3189376%2fproof-involving-the-spectral-radius-and-the-jordan-canonical-form%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            5












            $begingroup$

            You don't really need Jordan canonical form. If $rho(A) ge 1$, $A$ has an eigenvalue $lambda$ with $|lambda| ge 1$. That eigenvalue has an eigenvector $v$. Then $A^n v = lambda^n v$, so $|A^n v| = |lambda|^n |v| ge |v|$ does not go to $0$ as $n to infty$, which is impossible if $A^n to 0$.






            share|cite|improve this answer









            $endgroup$

















              5












              $begingroup$

              You don't really need Jordan canonical form. If $rho(A) ge 1$, $A$ has an eigenvalue $lambda$ with $|lambda| ge 1$. That eigenvalue has an eigenvector $v$. Then $A^n v = lambda^n v$, so $|A^n v| = |lambda|^n |v| ge |v|$ does not go to $0$ as $n to infty$, which is impossible if $A^n to 0$.






              share|cite|improve this answer









              $endgroup$















                5












                5








                5





                $begingroup$

                You don't really need Jordan canonical form. If $rho(A) ge 1$, $A$ has an eigenvalue $lambda$ with $|lambda| ge 1$. That eigenvalue has an eigenvector $v$. Then $A^n v = lambda^n v$, so $|A^n v| = |lambda|^n |v| ge |v|$ does not go to $0$ as $n to infty$, which is impossible if $A^n to 0$.






                share|cite|improve this answer









                $endgroup$



                You don't really need Jordan canonical form. If $rho(A) ge 1$, $A$ has an eigenvalue $lambda$ with $|lambda| ge 1$. That eigenvalue has an eigenvector $v$. Then $A^n v = lambda^n v$, so $|A^n v| = |lambda|^n |v| ge |v|$ does not go to $0$ as $n to infty$, which is impossible if $A^n to 0$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 1 hour ago









                Robert IsraelRobert Israel

                332k23221478




                332k23221478





















                    2












                    $begingroup$

                    Hint



                    $$A=PJP^-1 \
                    J=beginbmatrix
                    lambda_1 & * & 0 & 0 & 0 & ... & 0 \
                    0& lambda_2 & * & 0 & 0 & ... & 0 \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n \
                    endbmatrix$$

                    where each $*$ is either $0$ or $1$.



                    Prove by induction that
                    $$J^m=beginbmatrix
                    lambda_1^m & star & star & star & star & ... & star \
                    0& lambda_2^m & star & star & star & ... & star \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n^m \
                    endbmatrix$$

                    where the $star$s represent numbers, that is $J^m$ is an upper triangular matrix
                    with the $m$^th powers of the eigenvalues on the diagonal.



                    Note The above claim for $J^m$ is not fully using that $J$ is a Jordan cannonical form. It only uses that $J$ is upper triangular.






                    share|cite|improve this answer









                    $endgroup$












                    • $begingroup$
                      So, $A^m = PJ^mP^-1$. If I can show what you're asking by induction, would the limit of $J^m = 0$? I'm sure it is because the diagonal entries are less than one, right?
                      $endgroup$
                      – mXdX
                      1 hour ago










                    • $begingroup$
                      @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^-1 A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
                      $endgroup$
                      – N. S.
                      1 hour ago










                    • $begingroup$
                      I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^m$ are the $m$th powers of the eigenvalues.
                      $endgroup$
                      – mXdX
                      1 hour ago















                    2












                    $begingroup$

                    Hint



                    $$A=PJP^-1 \
                    J=beginbmatrix
                    lambda_1 & * & 0 & 0 & 0 & ... & 0 \
                    0& lambda_2 & * & 0 & 0 & ... & 0 \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n \
                    endbmatrix$$

                    where each $*$ is either $0$ or $1$.



                    Prove by induction that
                    $$J^m=beginbmatrix
                    lambda_1^m & star & star & star & star & ... & star \
                    0& lambda_2^m & star & star & star & ... & star \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n^m \
                    endbmatrix$$

                    where the $star$s represent numbers, that is $J^m$ is an upper triangular matrix
                    with the $m$^th powers of the eigenvalues on the diagonal.



                    Note The above claim for $J^m$ is not fully using that $J$ is a Jordan cannonical form. It only uses that $J$ is upper triangular.






                    share|cite|improve this answer









                    $endgroup$












                    • $begingroup$
                      So, $A^m = PJ^mP^-1$. If I can show what you're asking by induction, would the limit of $J^m = 0$? I'm sure it is because the diagonal entries are less than one, right?
                      $endgroup$
                      – mXdX
                      1 hour ago










                    • $begingroup$
                      @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^-1 A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
                      $endgroup$
                      – N. S.
                      1 hour ago










                    • $begingroup$
                      I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^m$ are the $m$th powers of the eigenvalues.
                      $endgroup$
                      – mXdX
                      1 hour ago













                    2












                    2








                    2





                    $begingroup$

                    Hint



                    $$A=PJP^-1 \
                    J=beginbmatrix
                    lambda_1 & * & 0 & 0 & 0 & ... & 0 \
                    0& lambda_2 & * & 0 & 0 & ... & 0 \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n \
                    endbmatrix$$

                    where each $*$ is either $0$ or $1$.



                    Prove by induction that
                    $$J^m=beginbmatrix
                    lambda_1^m & star & star & star & star & ... & star \
                    0& lambda_2^m & star & star & star & ... & star \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n^m \
                    endbmatrix$$

                    where the $star$s represent numbers, that is $J^m$ is an upper triangular matrix
                    with the $m$^th powers of the eigenvalues on the diagonal.



                    Note The above claim for $J^m$ is not fully using that $J$ is a Jordan cannonical form. It only uses that $J$ is upper triangular.






                    share|cite|improve this answer









                    $endgroup$



                    Hint



                    $$A=PJP^-1 \
                    J=beginbmatrix
                    lambda_1 & * & 0 & 0 & 0 & ... & 0 \
                    0& lambda_2 & * & 0 & 0 & ... & 0 \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n \
                    endbmatrix$$

                    where each $*$ is either $0$ or $1$.



                    Prove by induction that
                    $$J^m=beginbmatrix
                    lambda_1^m & star & star & star & star & ... & star \
                    0& lambda_2^m & star & star & star & ... & star \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n^m \
                    endbmatrix$$

                    where the $star$s represent numbers, that is $J^m$ is an upper triangular matrix
                    with the $m$^th powers of the eigenvalues on the diagonal.



                    Note The above claim for $J^m$ is not fully using that $J$ is a Jordan cannonical form. It only uses that $J$ is upper triangular.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 1 hour ago









                    N. S.N. S.

                    105k7115210




                    105k7115210











                    • $begingroup$
                      So, $A^m = PJ^mP^-1$. If I can show what you're asking by induction, would the limit of $J^m = 0$? I'm sure it is because the diagonal entries are less than one, right?
                      $endgroup$
                      – mXdX
                      1 hour ago










                    • $begingroup$
                      @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^-1 A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
                      $endgroup$
                      – N. S.
                      1 hour ago










                    • $begingroup$
                      I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^m$ are the $m$th powers of the eigenvalues.
                      $endgroup$
                      – mXdX
                      1 hour ago
















                    • $begingroup$
                      So, $A^m = PJ^mP^-1$. If I can show what you're asking by induction, would the limit of $J^m = 0$? I'm sure it is because the diagonal entries are less than one, right?
                      $endgroup$
                      – mXdX
                      1 hour ago










                    • $begingroup$
                      @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^-1 A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
                      $endgroup$
                      – N. S.
                      1 hour ago










                    • $begingroup$
                      I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^m$ are the $m$th powers of the eigenvalues.
                      $endgroup$
                      – mXdX
                      1 hour ago















                    $begingroup$
                    So, $A^m = PJ^mP^-1$. If I can show what you're asking by induction, would the limit of $J^m = 0$? I'm sure it is because the diagonal entries are less than one, right?
                    $endgroup$
                    – mXdX
                    1 hour ago




                    $begingroup$
                    So, $A^m = PJ^mP^-1$. If I can show what you're asking by induction, would the limit of $J^m = 0$? I'm sure it is because the diagonal entries are less than one, right?
                    $endgroup$
                    – mXdX
                    1 hour ago












                    $begingroup$
                    @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^-1 A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
                    $endgroup$
                    – N. S.
                    1 hour ago




                    $begingroup$
                    @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^-1 A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
                    $endgroup$
                    – N. S.
                    1 hour ago












                    $begingroup$
                    I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^m$ are the $m$th powers of the eigenvalues.
                    $endgroup$
                    – mXdX
                    1 hour ago




                    $begingroup$
                    I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^m$ are the $m$th powers of the eigenvalues.
                    $endgroup$
                    – mXdX
                    1 hour ago

















                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3189376%2fproof-involving-the-spectral-radius-and-the-jordan-canonical-form%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Are there any AGPL-style licences that require source code modifications to be public? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Force derivative works to be publicAre there any GPL like licenses for Apple App Store?Do you violate the GPL if you provide source code that cannot be compiled?GPL - is it distribution to use libraries in an appliance loaned to customers?Distributing App for free which uses GPL'ed codeModifications of server software under GPL, with web/CLI interfaceDoes using an AGPLv3-licensed library prevent me from dual-licensing my own source code?Can I publish only select code under GPLv3 from a private project?Is there published precedent regarding the scope of covered work that uses AGPL software?If MIT licensed code links to GPL licensed code what should be the license of the resulting binary program?If I use a public API endpoint that has its source code licensed under AGPL in my app, do I need to disclose my source?

                    2013 GY136 Descoberta | Órbita | Referências Menu de navegação«List Of Centaurs and Scattered-Disk Objects»«List of Known Trans-Neptunian Objects»

                    Button changing it's text & action. Good or terrible? The 2019 Stack Overflow Developer Survey Results Are Inchanging text on user mouseoverShould certain functions be “hard to find” for powerusers to discover?Custom liking function - do I need user login?Using different checkbox style for different checkbox behaviorBest Practices: Save and Exit in Software UIInteraction with remote validated formMore efficient UI to progress the user through a complicated process?Designing a popup notice for a gameShould bulk-editing functions be hidden until a table row is selected, or is there a better solution?Is it bad practice to disable (replace) the context menu?