(Calculus) Derivative Thinking QuestionAP Calculus DerivativeTextual explanation of a derivativeFor what values of $a$ will $y=ax$ be a tangent to $x^2+y^2+20x-10y+100=0$How to find the slope of curves at origin if the derivative becomes indeterminateTangent line at point PProof of tangent lines to a curveHow can I find m using the discriminant?Find equation of tangent to the circleIf first derivative of a point on curve gives the slope of tangent,what does the second derivative give,slope of tangent,i.e zero?Calculus and Vectors Question

Define, (actually define) the "stability" and "energy" of a compound

Property of summation

How difficult is it to simply disable/disengage the MCAS on Boeing 737 Max 8 & 9 Aircraft?

How to deal with taxi scam when on vacation?

What's the meaning of “spike” in the context of “adrenaline spike”?

Does Mathematica reuse previous computations?

Python if-else code style for reduced code for rounding floats

Declaring defaulted assignment operator as constexpr: which compiler is right?

What do Xenomorphs eat in the Alien series?

Use void Apex method in Lightning Web Component

Is it possible to upcast ritual spells?

How to make healing in an exploration game interesting

Is it normal that my co-workers at a fitness company criticize my food choices?

Is it true that good novels will automatically sell themselves on Amazon (and so on) and there is no need for one to waste time promoting?

Did Ender ever learn that he killed Stilson and/or Bonzo?

Are there other languages, besides English, where the indefinite (or definite) article varies based on sound?

Look at your watch and tell me what time is it. vs Look at your watch and tell me what time it is

Is a party consisting of only a bard, a cleric, and a warlock functional long-term?

A limit with limit zero everywhere must be zero somewhere

Why does Bach not break the rules here?

How to read the value of this capacitor?

Should we release the security issues we found in our product as CVE or we can just update those on weekly release notes?

What did Alexander Pope mean by "Expletives their feeble Aid do join"?

Do I need to be arrogant to get ahead?



(Calculus) Derivative Thinking Question


AP Calculus DerivativeTextual explanation of a derivativeFor what values of $a$ will $y=ax$ be a tangent to $x^2+y^2+20x-10y+100=0$How to find the slope of curves at origin if the derivative becomes indeterminateTangent line at point PProof of tangent lines to a curveHow can I find m using the discriminant?Find equation of tangent to the circleIf first derivative of a point on curve gives the slope of tangent,what does the second derivative give,slope of tangent,i.e zero?Calculus and Vectors Question













4












$begingroup$


Recently, my Calculus and Vectors (Grade 12) teacher gave our class a thinking question/assignment to work on over the march break, and after working on for some time, I've become stuck on it.



The Question:



Consider f(x), a general quadratic function in standard form, and g(x) its reciprocal. For which values of x are the slopes of their respective tangent lines equal?



Consider two cases: one where it is true for exactly one value of x, and the other where it is true for exactly two values of x. In the latter case, you can assume that the steepness a does not equal 0 of f(x) is equal to both it’s y-intercept and also to the slope of its tangent at x = 1.



Find the required conditions on the parameters a,b,c in terms of a.



My Progress So Far:



So I know that $f(x) = ax^2 +bx + c$ and $g(x) = 1/f(x)$. After I solved for the derivative of each function, I set them both equal to each other and started solving for it. But then I came to a equation of $(ax^2 + bx + c)^2 = -1$ and that doesn't work.



Next I tried something else. Since I know from the 2nd case that $f(x) = c$ and $f(x) = f'(1)$ when a cannot equal 0, I set $c = f'(1)$ and got $c = 2a + b$. But after that, I don't know where to go.



I'm not expecting a full solution, but if anyone could give me a hint for solving this question, I would appreciate it. I know that it says to write everything in terms of a, but I'm not sure how to approach that method.










share|cite|improve this question









New contributor




Rasheed Amanzai is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    I made a typo in solving and so my prior comment did not make sense. To get your equation $f(x)^2=-1$ you likely made a cancellation on both sides, but what happens if the term you canceled is zero?
    $endgroup$
    – Michael
    1 hour ago











  • $begingroup$
    The term that I cancelled was 2ax+b (which is f'(x)), I don't know if the term cancelled can be zero since I do not know the unknowns. (I apologize if I didn't answer your question).
    $endgroup$
    – Rasheed Amanzai
    1 hour ago






  • 1




    $begingroup$
    So you got $-f'(x)=f'(x)f(x)^2$ and want to find an $x$ where this is possible. It is not possible if $f'(x) neq 0$ as you already showed and so the only way possible is if $f'(x)=0$. So then for what values of $a,b$ is it possible to have $2ax+b=0$?
    $endgroup$
    – Michael
    55 mins ago











  • $begingroup$
    Now that made a lot more sense to me. So then the values of a and b would both have to equal 0 in order to get f'(x) = 0.
    $endgroup$
    – Rasheed Amanzai
    31 mins ago















4












$begingroup$


Recently, my Calculus and Vectors (Grade 12) teacher gave our class a thinking question/assignment to work on over the march break, and after working on for some time, I've become stuck on it.



The Question:



Consider f(x), a general quadratic function in standard form, and g(x) its reciprocal. For which values of x are the slopes of their respective tangent lines equal?



Consider two cases: one where it is true for exactly one value of x, and the other where it is true for exactly two values of x. In the latter case, you can assume that the steepness a does not equal 0 of f(x) is equal to both it’s y-intercept and also to the slope of its tangent at x = 1.



Find the required conditions on the parameters a,b,c in terms of a.



My Progress So Far:



So I know that $f(x) = ax^2 +bx + c$ and $g(x) = 1/f(x)$. After I solved for the derivative of each function, I set them both equal to each other and started solving for it. But then I came to a equation of $(ax^2 + bx + c)^2 = -1$ and that doesn't work.



Next I tried something else. Since I know from the 2nd case that $f(x) = c$ and $f(x) = f'(1)$ when a cannot equal 0, I set $c = f'(1)$ and got $c = 2a + b$. But after that, I don't know where to go.



I'm not expecting a full solution, but if anyone could give me a hint for solving this question, I would appreciate it. I know that it says to write everything in terms of a, but I'm not sure how to approach that method.










share|cite|improve this question









New contributor




Rasheed Amanzai is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    I made a typo in solving and so my prior comment did not make sense. To get your equation $f(x)^2=-1$ you likely made a cancellation on both sides, but what happens if the term you canceled is zero?
    $endgroup$
    – Michael
    1 hour ago











  • $begingroup$
    The term that I cancelled was 2ax+b (which is f'(x)), I don't know if the term cancelled can be zero since I do not know the unknowns. (I apologize if I didn't answer your question).
    $endgroup$
    – Rasheed Amanzai
    1 hour ago






  • 1




    $begingroup$
    So you got $-f'(x)=f'(x)f(x)^2$ and want to find an $x$ where this is possible. It is not possible if $f'(x) neq 0$ as you already showed and so the only way possible is if $f'(x)=0$. So then for what values of $a,b$ is it possible to have $2ax+b=0$?
    $endgroup$
    – Michael
    55 mins ago











  • $begingroup$
    Now that made a lot more sense to me. So then the values of a and b would both have to equal 0 in order to get f'(x) = 0.
    $endgroup$
    – Rasheed Amanzai
    31 mins ago













4












4








4





$begingroup$


Recently, my Calculus and Vectors (Grade 12) teacher gave our class a thinking question/assignment to work on over the march break, and after working on for some time, I've become stuck on it.



The Question:



Consider f(x), a general quadratic function in standard form, and g(x) its reciprocal. For which values of x are the slopes of their respective tangent lines equal?



Consider two cases: one where it is true for exactly one value of x, and the other where it is true for exactly two values of x. In the latter case, you can assume that the steepness a does not equal 0 of f(x) is equal to both it’s y-intercept and also to the slope of its tangent at x = 1.



Find the required conditions on the parameters a,b,c in terms of a.



My Progress So Far:



So I know that $f(x) = ax^2 +bx + c$ and $g(x) = 1/f(x)$. After I solved for the derivative of each function, I set them both equal to each other and started solving for it. But then I came to a equation of $(ax^2 + bx + c)^2 = -1$ and that doesn't work.



Next I tried something else. Since I know from the 2nd case that $f(x) = c$ and $f(x) = f'(1)$ when a cannot equal 0, I set $c = f'(1)$ and got $c = 2a + b$. But after that, I don't know where to go.



I'm not expecting a full solution, but if anyone could give me a hint for solving this question, I would appreciate it. I know that it says to write everything in terms of a, but I'm not sure how to approach that method.










share|cite|improve this question









New contributor




Rasheed Amanzai is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




Recently, my Calculus and Vectors (Grade 12) teacher gave our class a thinking question/assignment to work on over the march break, and after working on for some time, I've become stuck on it.



The Question:



Consider f(x), a general quadratic function in standard form, and g(x) its reciprocal. For which values of x are the slopes of their respective tangent lines equal?



Consider two cases: one where it is true for exactly one value of x, and the other where it is true for exactly two values of x. In the latter case, you can assume that the steepness a does not equal 0 of f(x) is equal to both it’s y-intercept and also to the slope of its tangent at x = 1.



Find the required conditions on the parameters a,b,c in terms of a.



My Progress So Far:



So I know that $f(x) = ax^2 +bx + c$ and $g(x) = 1/f(x)$. After I solved for the derivative of each function, I set them both equal to each other and started solving for it. But then I came to a equation of $(ax^2 + bx + c)^2 = -1$ and that doesn't work.



Next I tried something else. Since I know from the 2nd case that $f(x) = c$ and $f(x) = f'(1)$ when a cannot equal 0, I set $c = f'(1)$ and got $c = 2a + b$. But after that, I don't know where to go.



I'm not expecting a full solution, but if anyone could give me a hint for solving this question, I would appreciate it. I know that it says to write everything in terms of a, but I'm not sure how to approach that method.







calculus derivatives quadratics tangent-line slope






share|cite|improve this question









New contributor




Rasheed Amanzai is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




Rasheed Amanzai is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 50 mins ago









Jon due

948




948






New contributor




Rasheed Amanzai is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 1 hour ago









Rasheed AmanzaiRasheed Amanzai

213




213




New contributor




Rasheed Amanzai is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Rasheed Amanzai is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Rasheed Amanzai is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    I made a typo in solving and so my prior comment did not make sense. To get your equation $f(x)^2=-1$ you likely made a cancellation on both sides, but what happens if the term you canceled is zero?
    $endgroup$
    – Michael
    1 hour ago











  • $begingroup$
    The term that I cancelled was 2ax+b (which is f'(x)), I don't know if the term cancelled can be zero since I do not know the unknowns. (I apologize if I didn't answer your question).
    $endgroup$
    – Rasheed Amanzai
    1 hour ago






  • 1




    $begingroup$
    So you got $-f'(x)=f'(x)f(x)^2$ and want to find an $x$ where this is possible. It is not possible if $f'(x) neq 0$ as you already showed and so the only way possible is if $f'(x)=0$. So then for what values of $a,b$ is it possible to have $2ax+b=0$?
    $endgroup$
    – Michael
    55 mins ago











  • $begingroup$
    Now that made a lot more sense to me. So then the values of a and b would both have to equal 0 in order to get f'(x) = 0.
    $endgroup$
    – Rasheed Amanzai
    31 mins ago
















  • $begingroup$
    I made a typo in solving and so my prior comment did not make sense. To get your equation $f(x)^2=-1$ you likely made a cancellation on both sides, but what happens if the term you canceled is zero?
    $endgroup$
    – Michael
    1 hour ago











  • $begingroup$
    The term that I cancelled was 2ax+b (which is f'(x)), I don't know if the term cancelled can be zero since I do not know the unknowns. (I apologize if I didn't answer your question).
    $endgroup$
    – Rasheed Amanzai
    1 hour ago






  • 1




    $begingroup$
    So you got $-f'(x)=f'(x)f(x)^2$ and want to find an $x$ where this is possible. It is not possible if $f'(x) neq 0$ as you already showed and so the only way possible is if $f'(x)=0$. So then for what values of $a,b$ is it possible to have $2ax+b=0$?
    $endgroup$
    – Michael
    55 mins ago











  • $begingroup$
    Now that made a lot more sense to me. So then the values of a and b would both have to equal 0 in order to get f'(x) = 0.
    $endgroup$
    – Rasheed Amanzai
    31 mins ago















$begingroup$
I made a typo in solving and so my prior comment did not make sense. To get your equation $f(x)^2=-1$ you likely made a cancellation on both sides, but what happens if the term you canceled is zero?
$endgroup$
– Michael
1 hour ago





$begingroup$
I made a typo in solving and so my prior comment did not make sense. To get your equation $f(x)^2=-1$ you likely made a cancellation on both sides, but what happens if the term you canceled is zero?
$endgroup$
– Michael
1 hour ago













$begingroup$
The term that I cancelled was 2ax+b (which is f'(x)), I don't know if the term cancelled can be zero since I do not know the unknowns. (I apologize if I didn't answer your question).
$endgroup$
– Rasheed Amanzai
1 hour ago




$begingroup$
The term that I cancelled was 2ax+b (which is f'(x)), I don't know if the term cancelled can be zero since I do not know the unknowns. (I apologize if I didn't answer your question).
$endgroup$
– Rasheed Amanzai
1 hour ago




1




1




$begingroup$
So you got $-f'(x)=f'(x)f(x)^2$ and want to find an $x$ where this is possible. It is not possible if $f'(x) neq 0$ as you already showed and so the only way possible is if $f'(x)=0$. So then for what values of $a,b$ is it possible to have $2ax+b=0$?
$endgroup$
– Michael
55 mins ago





$begingroup$
So you got $-f'(x)=f'(x)f(x)^2$ and want to find an $x$ where this is possible. It is not possible if $f'(x) neq 0$ as you already showed and so the only way possible is if $f'(x)=0$. So then for what values of $a,b$ is it possible to have $2ax+b=0$?
$endgroup$
– Michael
55 mins ago













$begingroup$
Now that made a lot more sense to me. So then the values of a and b would both have to equal 0 in order to get f'(x) = 0.
$endgroup$
– Rasheed Amanzai
31 mins ago




$begingroup$
Now that made a lot more sense to me. So then the values of a and b would both have to equal 0 in order to get f'(x) = 0.
$endgroup$
– Rasheed Amanzai
31 mins ago










1 Answer
1






active

oldest

votes


















5












$begingroup$

If $g(x)=1/f(x)$, then, by the chain rule,
$$
g'(x)=-fracf'(x)f(x)^2
$$

Thus, assuming of course that $f(x)ne0$, we have $g'(x)=f'(x)$ if and only if
$$
-fracf'(x)f(x)^2=f'(x)
$$

which can only happen if $f'(x)=0$. Indeed, if $f'(x)ne0$, the equation becomes $f(x)^2=-1$, which is exactly the condition you find.



You can observe that this is independent of $f$ being a quadratic polynomial.



In your particular case, the condition is $x=-b/(2a)$, provided that $f(-b/(2a))ne0$ (or $g(-b/(2a))$ would be undefined.



enter image description here






share|cite|improve this answer









$endgroup$












    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );






    Rasheed Amanzai is a new contributor. Be nice, and check out our Code of Conduct.









    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3149858%2fcalculus-derivative-thinking-question%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    5












    $begingroup$

    If $g(x)=1/f(x)$, then, by the chain rule,
    $$
    g'(x)=-fracf'(x)f(x)^2
    $$

    Thus, assuming of course that $f(x)ne0$, we have $g'(x)=f'(x)$ if and only if
    $$
    -fracf'(x)f(x)^2=f'(x)
    $$

    which can only happen if $f'(x)=0$. Indeed, if $f'(x)ne0$, the equation becomes $f(x)^2=-1$, which is exactly the condition you find.



    You can observe that this is independent of $f$ being a quadratic polynomial.



    In your particular case, the condition is $x=-b/(2a)$, provided that $f(-b/(2a))ne0$ (or $g(-b/(2a))$ would be undefined.



    enter image description here






    share|cite|improve this answer









    $endgroup$

















      5












      $begingroup$

      If $g(x)=1/f(x)$, then, by the chain rule,
      $$
      g'(x)=-fracf'(x)f(x)^2
      $$

      Thus, assuming of course that $f(x)ne0$, we have $g'(x)=f'(x)$ if and only if
      $$
      -fracf'(x)f(x)^2=f'(x)
      $$

      which can only happen if $f'(x)=0$. Indeed, if $f'(x)ne0$, the equation becomes $f(x)^2=-1$, which is exactly the condition you find.



      You can observe that this is independent of $f$ being a quadratic polynomial.



      In your particular case, the condition is $x=-b/(2a)$, provided that $f(-b/(2a))ne0$ (or $g(-b/(2a))$ would be undefined.



      enter image description here






      share|cite|improve this answer









      $endgroup$















        5












        5








        5





        $begingroup$

        If $g(x)=1/f(x)$, then, by the chain rule,
        $$
        g'(x)=-fracf'(x)f(x)^2
        $$

        Thus, assuming of course that $f(x)ne0$, we have $g'(x)=f'(x)$ if and only if
        $$
        -fracf'(x)f(x)^2=f'(x)
        $$

        which can only happen if $f'(x)=0$. Indeed, if $f'(x)ne0$, the equation becomes $f(x)^2=-1$, which is exactly the condition you find.



        You can observe that this is independent of $f$ being a quadratic polynomial.



        In your particular case, the condition is $x=-b/(2a)$, provided that $f(-b/(2a))ne0$ (or $g(-b/(2a))$ would be undefined.



        enter image description here






        share|cite|improve this answer









        $endgroup$



        If $g(x)=1/f(x)$, then, by the chain rule,
        $$
        g'(x)=-fracf'(x)f(x)^2
        $$

        Thus, assuming of course that $f(x)ne0$, we have $g'(x)=f'(x)$ if and only if
        $$
        -fracf'(x)f(x)^2=f'(x)
        $$

        which can only happen if $f'(x)=0$. Indeed, if $f'(x)ne0$, the equation becomes $f(x)^2=-1$, which is exactly the condition you find.



        You can observe that this is independent of $f$ being a quadratic polynomial.



        In your particular case, the condition is $x=-b/(2a)$, provided that $f(-b/(2a))ne0$ (or $g(-b/(2a))$ would be undefined.



        enter image description here







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 1 hour ago









        egregegreg

        184k1486205




        184k1486205




















            Rasheed Amanzai is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            Rasheed Amanzai is a new contributor. Be nice, and check out our Code of Conduct.












            Rasheed Amanzai is a new contributor. Be nice, and check out our Code of Conduct.











            Rasheed Amanzai is a new contributor. Be nice, and check out our Code of Conduct.














            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3149858%2fcalculus-derivative-thinking-question%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Are there any AGPL-style licences that require source code modifications to be public? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Force derivative works to be publicAre there any GPL like licenses for Apple App Store?Do you violate the GPL if you provide source code that cannot be compiled?GPL - is it distribution to use libraries in an appliance loaned to customers?Distributing App for free which uses GPL'ed codeModifications of server software under GPL, with web/CLI interfaceDoes using an AGPLv3-licensed library prevent me from dual-licensing my own source code?Can I publish only select code under GPLv3 from a private project?Is there published precedent regarding the scope of covered work that uses AGPL software?If MIT licensed code links to GPL licensed code what should be the license of the resulting binary program?If I use a public API endpoint that has its source code licensed under AGPL in my app, do I need to disclose my source?

            2013 GY136 Descoberta | Órbita | Referências Menu de navegação«List Of Centaurs and Scattered-Disk Objects»«List of Known Trans-Neptunian Objects»

            Metrô de Los Teques Índice Linhas | Estações | Ver também | Referências Ligações externas | Menu de navegação«INSTITUCIÓN»«Mapa de rutas»originalMetrô de Los TequesC.A. Metro Los Teques |Alcaldía de Guaicaipuro – Sitio OficialGobernacion de Mirandaeeeeeee