0 rank tensor vs 1D vector The Next CEO of Stack OverflowHistory of Electromagnetic Field TensorIn field theory, why are some symmetry transformations applied to the field values while other act on the space that the fields are defined on?Possible confusion, the inertia of something yields a tensor? (trying to understand an example)Confusion about the mathematical nature of Elecromagnetic tensor end the E, B fieldsWhat exactly is the Parity transformation? Parity in spherical coordinatesHow to represent tensors in a base? And some questions about indicesA fundamental question about tensors and vectors4-Vector DefinitionDoubts on covariant and contravariant vectors and on double tensorsZero order Tensor

RigExpert AA-35 - Interpreting The Information

What flight has the highest ratio of time difference to flight time?

How to count occurrences of text in a file?

is it ok to reduce charging current for li ion 18650 battery?

Are police here, aren't itthey?

How to avoid supervisors with prejudiced views?

Is there a way to save my career from absolute disaster?

Rotate a column

Which one is the true statement?

How do I align (1) and (2)?

How to place nodes around a circle from some initial angle?

Why, when going from special to general relativity, do we just replace partial derivatives with covariant derivatives?

Newlines in BSD sed vs gsed

Why isn't acceleration always zero whenever velocity is zero, such as the moment a ball bounces off a wall?

Why do airplanes bank sharply to the right after air-to-air refueling?

Why this way of making earth uninhabitable in Interstellar?

How to scale a tikZ image which is within a figure environment

Solving system of ODEs with extra parameter

Flying from Cape Town to England and return to another province

Why is information "lost" when it got into a black hole?

Example of a Mathematician/Physicist whose Other Publications during their PhD eclipsed their PhD Thesis

Help understanding this unsettling image of Titan, Epimetheus, and Saturn's rings?

Why is my new battery behaving weirdly?

How a 64-bit process virtual address space is divided in Linux?



0 rank tensor vs 1D vector



The Next CEO of Stack OverflowHistory of Electromagnetic Field TensorIn field theory, why are some symmetry transformations applied to the field values while other act on the space that the fields are defined on?Possible confusion, the inertia of something yields a tensor? (trying to understand an example)Confusion about the mathematical nature of Elecromagnetic tensor end the E, B fieldsWhat exactly is the Parity transformation? Parity in spherical coordinatesHow to represent tensors in a base? And some questions about indicesA fundamental question about tensors and vectors4-Vector DefinitionDoubts on covariant and contravariant vectors and on double tensorsZero order Tensor










4












$begingroup$


What is the difference between zero-rank tensor $x$ (scalar) and 1D vector $[x]$?



As far as I understand tensor is anything which can be measured and different measures can be transformed into eachother. That is, there are different basises for looking at one object.



Is lengh a scalar (zero rank tensor)?
I think it is not.
ex.:



  • physical parameter: writing pen's length

  • tensor: $l$

  • length in inches: $[5.511811023622]$

  • length in centimeters: $[14]$

  • transformation law: 1cm = 2.54inch

so $l$ is a scalar, but on the other hand it's a tensor of rank 1 since "physical parameter of length is invariant, only it's measures (in different units) are".



The same example can be made with classical example of temperature (which is used as a primer of zero rank tensor most in any book) in C and K units. I'm confused.










share|cite|improve this question











$endgroup$
















    4












    $begingroup$


    What is the difference between zero-rank tensor $x$ (scalar) and 1D vector $[x]$?



    As far as I understand tensor is anything which can be measured and different measures can be transformed into eachother. That is, there are different basises for looking at one object.



    Is lengh a scalar (zero rank tensor)?
    I think it is not.
    ex.:



    • physical parameter: writing pen's length

    • tensor: $l$

    • length in inches: $[5.511811023622]$

    • length in centimeters: $[14]$

    • transformation law: 1cm = 2.54inch

    so $l$ is a scalar, but on the other hand it's a tensor of rank 1 since "physical parameter of length is invariant, only it's measures (in different units) are".



    The same example can be made with classical example of temperature (which is used as a primer of zero rank tensor most in any book) in C and K units. I'm confused.










    share|cite|improve this question











    $endgroup$














      4












      4








      4





      $begingroup$


      What is the difference between zero-rank tensor $x$ (scalar) and 1D vector $[x]$?



      As far as I understand tensor is anything which can be measured and different measures can be transformed into eachother. That is, there are different basises for looking at one object.



      Is lengh a scalar (zero rank tensor)?
      I think it is not.
      ex.:



      • physical parameter: writing pen's length

      • tensor: $l$

      • length in inches: $[5.511811023622]$

      • length in centimeters: $[14]$

      • transformation law: 1cm = 2.54inch

      so $l$ is a scalar, but on the other hand it's a tensor of rank 1 since "physical parameter of length is invariant, only it's measures (in different units) are".



      The same example can be made with classical example of temperature (which is used as a primer of zero rank tensor most in any book) in C and K units. I'm confused.










      share|cite|improve this question











      $endgroup$




      What is the difference between zero-rank tensor $x$ (scalar) and 1D vector $[x]$?



      As far as I understand tensor is anything which can be measured and different measures can be transformed into eachother. That is, there are different basises for looking at one object.



      Is lengh a scalar (zero rank tensor)?
      I think it is not.
      ex.:



      • physical parameter: writing pen's length

      • tensor: $l$

      • length in inches: $[5.511811023622]$

      • length in centimeters: $[14]$

      • transformation law: 1cm = 2.54inch

      so $l$ is a scalar, but on the other hand it's a tensor of rank 1 since "physical parameter of length is invariant, only it's measures (in different units) are".



      The same example can be made with classical example of temperature (which is used as a primer of zero rank tensor most in any book) in C and K units. I'm confused.







      tensor-calculus






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 2 hours ago









      Szabolcs Berecz

      1031




      1031










      asked 2 hours ago









      coobitcoobit

      350110




      350110




















          1 Answer
          1






          active

          oldest

          votes


















          6












          $begingroup$

          “Scalar”, “vector”, and “tensor” have no meaning without specifying the group of transformations. In physics we focus on groups such as rotations, Galilean transformations, Lorentz transformations, Poincaire transformations, and gauge transformations because these are symmetries of various physical theories, built in to reflect symmetries of the natural world.



          The length of a writing pen is a scalar under rotations and Galilean transformations. This is a significant physical fact about our world.



          But the fact that you can measure its length in various units is not significant, because units are inventions of humans, not of Nature. Physicists never say that the length of a writing pen “transforms” because you can choose to measure it in different length units. Different units such as inches and centimeters for a particular physical quantity like length do not have any physical significance at all.



          Going back to your original question, the difference between a scalar and a vector under rotations should now be obvious: a scalar is a single number that stays the same under a rotation, while a vector is a directed quantity that requires three numbers to describe it, and under rotations these numbers transform into linear combinations of each other, as specified by the relevant rotation matrix.



          Under any other transformation group, the distinction between scalars and vectors is similar.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            I'm sorry if it might sound dumb, but ... Is 1D vector invariant under rotation? I mean is there rotation in 1D space? If so how it's different from scalar?
            $endgroup$
            – coobit
            56 mins ago











          • $begingroup$
            @coobit Consider the group of reflections along that one dimension. A vector changes sign, but a scalar doesn't.
            $endgroup$
            – Chiral Anomaly
            45 mins ago










          • $begingroup$
            Whoops, I completely overlooked the fact that you were asking about 1D. (Since you had referred to scalars as rank 0, I was thinking "rank 1" , not "1D", when you said "vector".) There are no proper rotations in 1D. As @ChiralAnomaly explains, you can consider 1D reflections, and scalar and vectors transform differently under these, even though both are only a single number.
            $endgroup$
            – G. Smith
            20 mins ago












          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "151"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f469598%2f0-rank-tensor-vs-1d-vector%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          6












          $begingroup$

          “Scalar”, “vector”, and “tensor” have no meaning without specifying the group of transformations. In physics we focus on groups such as rotations, Galilean transformations, Lorentz transformations, Poincaire transformations, and gauge transformations because these are symmetries of various physical theories, built in to reflect symmetries of the natural world.



          The length of a writing pen is a scalar under rotations and Galilean transformations. This is a significant physical fact about our world.



          But the fact that you can measure its length in various units is not significant, because units are inventions of humans, not of Nature. Physicists never say that the length of a writing pen “transforms” because you can choose to measure it in different length units. Different units such as inches and centimeters for a particular physical quantity like length do not have any physical significance at all.



          Going back to your original question, the difference between a scalar and a vector under rotations should now be obvious: a scalar is a single number that stays the same under a rotation, while a vector is a directed quantity that requires three numbers to describe it, and under rotations these numbers transform into linear combinations of each other, as specified by the relevant rotation matrix.



          Under any other transformation group, the distinction between scalars and vectors is similar.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            I'm sorry if it might sound dumb, but ... Is 1D vector invariant under rotation? I mean is there rotation in 1D space? If so how it's different from scalar?
            $endgroup$
            – coobit
            56 mins ago











          • $begingroup$
            @coobit Consider the group of reflections along that one dimension. A vector changes sign, but a scalar doesn't.
            $endgroup$
            – Chiral Anomaly
            45 mins ago










          • $begingroup$
            Whoops, I completely overlooked the fact that you were asking about 1D. (Since you had referred to scalars as rank 0, I was thinking "rank 1" , not "1D", when you said "vector".) There are no proper rotations in 1D. As @ChiralAnomaly explains, you can consider 1D reflections, and scalar and vectors transform differently under these, even though both are only a single number.
            $endgroup$
            – G. Smith
            20 mins ago
















          6












          $begingroup$

          “Scalar”, “vector”, and “tensor” have no meaning without specifying the group of transformations. In physics we focus on groups such as rotations, Galilean transformations, Lorentz transformations, Poincaire transformations, and gauge transformations because these are symmetries of various physical theories, built in to reflect symmetries of the natural world.



          The length of a writing pen is a scalar under rotations and Galilean transformations. This is a significant physical fact about our world.



          But the fact that you can measure its length in various units is not significant, because units are inventions of humans, not of Nature. Physicists never say that the length of a writing pen “transforms” because you can choose to measure it in different length units. Different units such as inches and centimeters for a particular physical quantity like length do not have any physical significance at all.



          Going back to your original question, the difference between a scalar and a vector under rotations should now be obvious: a scalar is a single number that stays the same under a rotation, while a vector is a directed quantity that requires three numbers to describe it, and under rotations these numbers transform into linear combinations of each other, as specified by the relevant rotation matrix.



          Under any other transformation group, the distinction between scalars and vectors is similar.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            I'm sorry if it might sound dumb, but ... Is 1D vector invariant under rotation? I mean is there rotation in 1D space? If so how it's different from scalar?
            $endgroup$
            – coobit
            56 mins ago











          • $begingroup$
            @coobit Consider the group of reflections along that one dimension. A vector changes sign, but a scalar doesn't.
            $endgroup$
            – Chiral Anomaly
            45 mins ago










          • $begingroup$
            Whoops, I completely overlooked the fact that you were asking about 1D. (Since you had referred to scalars as rank 0, I was thinking "rank 1" , not "1D", when you said "vector".) There are no proper rotations in 1D. As @ChiralAnomaly explains, you can consider 1D reflections, and scalar and vectors transform differently under these, even though both are only a single number.
            $endgroup$
            – G. Smith
            20 mins ago














          6












          6








          6





          $begingroup$

          “Scalar”, “vector”, and “tensor” have no meaning without specifying the group of transformations. In physics we focus on groups such as rotations, Galilean transformations, Lorentz transformations, Poincaire transformations, and gauge transformations because these are symmetries of various physical theories, built in to reflect symmetries of the natural world.



          The length of a writing pen is a scalar under rotations and Galilean transformations. This is a significant physical fact about our world.



          But the fact that you can measure its length in various units is not significant, because units are inventions of humans, not of Nature. Physicists never say that the length of a writing pen “transforms” because you can choose to measure it in different length units. Different units such as inches and centimeters for a particular physical quantity like length do not have any physical significance at all.



          Going back to your original question, the difference between a scalar and a vector under rotations should now be obvious: a scalar is a single number that stays the same under a rotation, while a vector is a directed quantity that requires three numbers to describe it, and under rotations these numbers transform into linear combinations of each other, as specified by the relevant rotation matrix.



          Under any other transformation group, the distinction between scalars and vectors is similar.






          share|cite|improve this answer











          $endgroup$



          “Scalar”, “vector”, and “tensor” have no meaning without specifying the group of transformations. In physics we focus on groups such as rotations, Galilean transformations, Lorentz transformations, Poincaire transformations, and gauge transformations because these are symmetries of various physical theories, built in to reflect symmetries of the natural world.



          The length of a writing pen is a scalar under rotations and Galilean transformations. This is a significant physical fact about our world.



          But the fact that you can measure its length in various units is not significant, because units are inventions of humans, not of Nature. Physicists never say that the length of a writing pen “transforms” because you can choose to measure it in different length units. Different units such as inches and centimeters for a particular physical quantity like length do not have any physical significance at all.



          Going back to your original question, the difference between a scalar and a vector under rotations should now be obvious: a scalar is a single number that stays the same under a rotation, while a vector is a directed quantity that requires three numbers to describe it, and under rotations these numbers transform into linear combinations of each other, as specified by the relevant rotation matrix.



          Under any other transformation group, the distinction between scalars and vectors is similar.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 1 hour ago

























          answered 2 hours ago









          G. SmithG. Smith

          10.2k11428




          10.2k11428











          • $begingroup$
            I'm sorry if it might sound dumb, but ... Is 1D vector invariant under rotation? I mean is there rotation in 1D space? If so how it's different from scalar?
            $endgroup$
            – coobit
            56 mins ago











          • $begingroup$
            @coobit Consider the group of reflections along that one dimension. A vector changes sign, but a scalar doesn't.
            $endgroup$
            – Chiral Anomaly
            45 mins ago










          • $begingroup$
            Whoops, I completely overlooked the fact that you were asking about 1D. (Since you had referred to scalars as rank 0, I was thinking "rank 1" , not "1D", when you said "vector".) There are no proper rotations in 1D. As @ChiralAnomaly explains, you can consider 1D reflections, and scalar and vectors transform differently under these, even though both are only a single number.
            $endgroup$
            – G. Smith
            20 mins ago

















          • $begingroup$
            I'm sorry if it might sound dumb, but ... Is 1D vector invariant under rotation? I mean is there rotation in 1D space? If so how it's different from scalar?
            $endgroup$
            – coobit
            56 mins ago











          • $begingroup$
            @coobit Consider the group of reflections along that one dimension. A vector changes sign, but a scalar doesn't.
            $endgroup$
            – Chiral Anomaly
            45 mins ago










          • $begingroup$
            Whoops, I completely overlooked the fact that you were asking about 1D. (Since you had referred to scalars as rank 0, I was thinking "rank 1" , not "1D", when you said "vector".) There are no proper rotations in 1D. As @ChiralAnomaly explains, you can consider 1D reflections, and scalar and vectors transform differently under these, even though both are only a single number.
            $endgroup$
            – G. Smith
            20 mins ago
















          $begingroup$
          I'm sorry if it might sound dumb, but ... Is 1D vector invariant under rotation? I mean is there rotation in 1D space? If so how it's different from scalar?
          $endgroup$
          – coobit
          56 mins ago





          $begingroup$
          I'm sorry if it might sound dumb, but ... Is 1D vector invariant under rotation? I mean is there rotation in 1D space? If so how it's different from scalar?
          $endgroup$
          – coobit
          56 mins ago













          $begingroup$
          @coobit Consider the group of reflections along that one dimension. A vector changes sign, but a scalar doesn't.
          $endgroup$
          – Chiral Anomaly
          45 mins ago




          $begingroup$
          @coobit Consider the group of reflections along that one dimension. A vector changes sign, but a scalar doesn't.
          $endgroup$
          – Chiral Anomaly
          45 mins ago












          $begingroup$
          Whoops, I completely overlooked the fact that you were asking about 1D. (Since you had referred to scalars as rank 0, I was thinking "rank 1" , not "1D", when you said "vector".) There are no proper rotations in 1D. As @ChiralAnomaly explains, you can consider 1D reflections, and scalar and vectors transform differently under these, even though both are only a single number.
          $endgroup$
          – G. Smith
          20 mins ago





          $begingroup$
          Whoops, I completely overlooked the fact that you were asking about 1D. (Since you had referred to scalars as rank 0, I was thinking "rank 1" , not "1D", when you said "vector".) There are no proper rotations in 1D. As @ChiralAnomaly explains, you can consider 1D reflections, and scalar and vectors transform differently under these, even though both are only a single number.
          $endgroup$
          – G. Smith
          20 mins ago


















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Physics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f469598%2f0-rank-tensor-vs-1d-vector%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Are there any AGPL-style licences that require source code modifications to be public? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Force derivative works to be publicAre there any GPL like licenses for Apple App Store?Do you violate the GPL if you provide source code that cannot be compiled?GPL - is it distribution to use libraries in an appliance loaned to customers?Distributing App for free which uses GPL'ed codeModifications of server software under GPL, with web/CLI interfaceDoes using an AGPLv3-licensed library prevent me from dual-licensing my own source code?Can I publish only select code under GPLv3 from a private project?Is there published precedent regarding the scope of covered work that uses AGPL software?If MIT licensed code links to GPL licensed code what should be the license of the resulting binary program?If I use a public API endpoint that has its source code licensed under AGPL in my app, do I need to disclose my source?

          2013 GY136 Descoberta | Órbita | Referências Menu de navegação«List Of Centaurs and Scattered-Disk Objects»«List of Known Trans-Neptunian Objects»

          Button changing it's text & action. Good or terrible? The 2019 Stack Overflow Developer Survey Results Are Inchanging text on user mouseoverShould certain functions be “hard to find” for powerusers to discover?Custom liking function - do I need user login?Using different checkbox style for different checkbox behaviorBest Practices: Save and Exit in Software UIInteraction with remote validated formMore efficient UI to progress the user through a complicated process?Designing a popup notice for a gameShould bulk-editing functions be hidden until a table row is selected, or is there a better solution?Is it bad practice to disable (replace) the context menu?