Some questions about different axiomatic systems for neighbourhoods The Next CEO of Stack OverflowDefinition of a Topology through neighbourhood basis?Characterization of TopologyOrigins of the modern definition of topologyWhich separation axiom?Topology and locally closed subsetsProving a injectivity in a separable Hausdorff space.Is Hausdorffness characterisable by the uniqueness of the limits?Is the projection on a product topology surjective?Proving the Product Topology does define a topologyHausdorff space in which every point has a compact neighbourhood is compactly generatedProof on trivial topological spaceUnion of Boundaries Formula

Can MTA send mail via a relay without being told so?

Can a Bladesinger Wizard use Bladesong with a Hand Crossbow?

Plot of histogram similar to output from @risk

What flight has the highest ratio of time difference to flight time?

Is a distribution that is normal, but highly skewed considered Gaussian?

Need help understanding a power circuit (caps and diodes)

Why isn't the Mueller report being released completely and unredacted?

Why the difference in type-inference over the as-pattern in two similar function definitions?

Why this way of making earth uninhabitable in Interstellar?

If Nick Fury and Coulson already knew about aliens (Kree and Skrull) why did they wait until Thor's appearance to start making weapons?

Is this "being" usage is essential?

How to get from Geneva Airport to Metabief?

Is it ever safe to open a suspicious HTML file (e.g. email attachment)?

Recycling old answers

Does soap repel water?

Running a General Election and the European Elections together

Example of a Mathematician/Physicist whose Other Publications during their PhD eclipsed their PhD Thesis

I believe this to be a fraud - hired, then asked to cash check and send cash as Bitcoin

Is it okay to majorly distort historical facts while writing a fiction story?

Inappropriate reference requests from Journal reviewers

Why is quantifier elimination desirable for a given theory?

Are police here, aren't itthey?

Rotate a column

Would a completely good Muggle be able to use a wand?



Some questions about different axiomatic systems for neighbourhoods



The Next CEO of Stack OverflowDefinition of a Topology through neighbourhood basis?Characterization of TopologyOrigins of the modern definition of topologyWhich separation axiom?Topology and locally closed subsetsProving a injectivity in a separable Hausdorff space.Is Hausdorffness characterisable by the uniqueness of the limits?Is the projection on a product topology surjective?Proving the Product Topology does define a topologyHausdorff space in which every point has a compact neighbourhood is compactly generatedProof on trivial topological spaceUnion of Boundaries Formula










3












$begingroup$


I was thinking a few days ago about the development of topology, especially how you arrive at the concept of a topology $tau$. I knew that a lot of initial ideas came from Hausdorff who defined a topological space by giving neighbourhood axioms; so I had a look at the original text ,,Grundzüge der Mengenlehre'' to see how his definition compares to the contemporary one.



Here is a translation of the ,,Umgebungsaxiome'' that Hausdorff gives:




$(A)~$ To every point $x$, there is some neighbourhood $U_x$; every neighbourhood $U_x$ contains the point $x$.



$(B)~$ If $U_x,V_x$ are two neighbourhoods of the same point $x$, there is a neighbourhood $W_x$, which is in both of them ($W_x subseteq U_x cap V_x$).



$(C)~$ If the point $y$ lies in $U_x$, there is a neighbourhood $U_y$, which is a subset of $U_x$ ($U_y subseteq U_x$).



$(D)~$ For two different points $x,y$ there exist two neighbourhoods $U_x, U_y$ with no common points ($U_x cap U_y = emptyset$).




and here is a version of the neighbourhood axioms you might find in a modern textbook




$mathcalN(x)$ is a set of neighbourhoods for $x$ iff
beginalign*
(0)&~~~ x in bigcap mathcalN(x) \
(1)&~~~ X in mathcalN(x) \
(2)&~~~ forall ~U_1,U_2 in mathcalN(x) : ~ U_1 cap U_2 in mathcalN(x) \
(3)&~~~ forall~ U subseteq X ~~forall~ N in mathcalN(x):~ N subseteq U Longrightarrow U in mathcalN(x) \
(4)&~~~ forall~ U in mathcalN(x) ~~exists~ V in mathcalN(x)~ forall p in V :~ U in mathcalN(p)
endalign*





Here are a few questions I still have after reading and thinking about it:




$(i)$ Are these axiomatic systems equivalent? Even leaving out axiom $(D)$ (since it says that the space is $T_2$) it does not seem to me that they are. A few of them clearly are equivalent, but I don't see how you could derive $(3)$ from $(A) - (C)$. I could at least imagine that one was added over time, which would explain the problem.



$(ii)$ What is the use of axiom $(4)$? I think most helpful to me would be an example of a proof in which the axiom is indispensable.



$(iii)$ (more historically minded question) How did the word ,,Umgebung'' ended up being translated to neighbourhood?




Hausdorff calls a set $U_x$ a ,,Umgebung'' of $x$ which in English (at least in the mathematical literature) is called a neighbourhood. This is quite strange, since neighbourhood has a direct translation to the German: ,,Nachbarschaft'' whose meaning is quite different from the one of ,,Umgebung''. I my opinion the later would be better translated by the word surrounding. Which makes me curious how the translation came about.










share|cite|improve this question









$endgroup$







  • 3




    $begingroup$
    Neighbourhood in English means "area around someone, close to someone", not being a neighbour, so Umgebung is quite equivalent. In Dutch we also say "omgeving". There is no etymologically close English equivalent to Umgebung AFAIK.
    $endgroup$
    – Henno Brandsma
    3 hours ago
















3












$begingroup$


I was thinking a few days ago about the development of topology, especially how you arrive at the concept of a topology $tau$. I knew that a lot of initial ideas came from Hausdorff who defined a topological space by giving neighbourhood axioms; so I had a look at the original text ,,Grundzüge der Mengenlehre'' to see how his definition compares to the contemporary one.



Here is a translation of the ,,Umgebungsaxiome'' that Hausdorff gives:




$(A)~$ To every point $x$, there is some neighbourhood $U_x$; every neighbourhood $U_x$ contains the point $x$.



$(B)~$ If $U_x,V_x$ are two neighbourhoods of the same point $x$, there is a neighbourhood $W_x$, which is in both of them ($W_x subseteq U_x cap V_x$).



$(C)~$ If the point $y$ lies in $U_x$, there is a neighbourhood $U_y$, which is a subset of $U_x$ ($U_y subseteq U_x$).



$(D)~$ For two different points $x,y$ there exist two neighbourhoods $U_x, U_y$ with no common points ($U_x cap U_y = emptyset$).




and here is a version of the neighbourhood axioms you might find in a modern textbook




$mathcalN(x)$ is a set of neighbourhoods for $x$ iff
beginalign*
(0)&~~~ x in bigcap mathcalN(x) \
(1)&~~~ X in mathcalN(x) \
(2)&~~~ forall ~U_1,U_2 in mathcalN(x) : ~ U_1 cap U_2 in mathcalN(x) \
(3)&~~~ forall~ U subseteq X ~~forall~ N in mathcalN(x):~ N subseteq U Longrightarrow U in mathcalN(x) \
(4)&~~~ forall~ U in mathcalN(x) ~~exists~ V in mathcalN(x)~ forall p in V :~ U in mathcalN(p)
endalign*





Here are a few questions I still have after reading and thinking about it:




$(i)$ Are these axiomatic systems equivalent? Even leaving out axiom $(D)$ (since it says that the space is $T_2$) it does not seem to me that they are. A few of them clearly are equivalent, but I don't see how you could derive $(3)$ from $(A) - (C)$. I could at least imagine that one was added over time, which would explain the problem.



$(ii)$ What is the use of axiom $(4)$? I think most helpful to me would be an example of a proof in which the axiom is indispensable.



$(iii)$ (more historically minded question) How did the word ,,Umgebung'' ended up being translated to neighbourhood?




Hausdorff calls a set $U_x$ a ,,Umgebung'' of $x$ which in English (at least in the mathematical literature) is called a neighbourhood. This is quite strange, since neighbourhood has a direct translation to the German: ,,Nachbarschaft'' whose meaning is quite different from the one of ,,Umgebung''. I my opinion the later would be better translated by the word surrounding. Which makes me curious how the translation came about.










share|cite|improve this question









$endgroup$







  • 3




    $begingroup$
    Neighbourhood in English means "area around someone, close to someone", not being a neighbour, so Umgebung is quite equivalent. In Dutch we also say "omgeving". There is no etymologically close English equivalent to Umgebung AFAIK.
    $endgroup$
    – Henno Brandsma
    3 hours ago














3












3








3





$begingroup$


I was thinking a few days ago about the development of topology, especially how you arrive at the concept of a topology $tau$. I knew that a lot of initial ideas came from Hausdorff who defined a topological space by giving neighbourhood axioms; so I had a look at the original text ,,Grundzüge der Mengenlehre'' to see how his definition compares to the contemporary one.



Here is a translation of the ,,Umgebungsaxiome'' that Hausdorff gives:




$(A)~$ To every point $x$, there is some neighbourhood $U_x$; every neighbourhood $U_x$ contains the point $x$.



$(B)~$ If $U_x,V_x$ are two neighbourhoods of the same point $x$, there is a neighbourhood $W_x$, which is in both of them ($W_x subseteq U_x cap V_x$).



$(C)~$ If the point $y$ lies in $U_x$, there is a neighbourhood $U_y$, which is a subset of $U_x$ ($U_y subseteq U_x$).



$(D)~$ For two different points $x,y$ there exist two neighbourhoods $U_x, U_y$ with no common points ($U_x cap U_y = emptyset$).




and here is a version of the neighbourhood axioms you might find in a modern textbook




$mathcalN(x)$ is a set of neighbourhoods for $x$ iff
beginalign*
(0)&~~~ x in bigcap mathcalN(x) \
(1)&~~~ X in mathcalN(x) \
(2)&~~~ forall ~U_1,U_2 in mathcalN(x) : ~ U_1 cap U_2 in mathcalN(x) \
(3)&~~~ forall~ U subseteq X ~~forall~ N in mathcalN(x):~ N subseteq U Longrightarrow U in mathcalN(x) \
(4)&~~~ forall~ U in mathcalN(x) ~~exists~ V in mathcalN(x)~ forall p in V :~ U in mathcalN(p)
endalign*





Here are a few questions I still have after reading and thinking about it:




$(i)$ Are these axiomatic systems equivalent? Even leaving out axiom $(D)$ (since it says that the space is $T_2$) it does not seem to me that they are. A few of them clearly are equivalent, but I don't see how you could derive $(3)$ from $(A) - (C)$. I could at least imagine that one was added over time, which would explain the problem.



$(ii)$ What is the use of axiom $(4)$? I think most helpful to me would be an example of a proof in which the axiom is indispensable.



$(iii)$ (more historically minded question) How did the word ,,Umgebung'' ended up being translated to neighbourhood?




Hausdorff calls a set $U_x$ a ,,Umgebung'' of $x$ which in English (at least in the mathematical literature) is called a neighbourhood. This is quite strange, since neighbourhood has a direct translation to the German: ,,Nachbarschaft'' whose meaning is quite different from the one of ,,Umgebung''. I my opinion the later would be better translated by the word surrounding. Which makes me curious how the translation came about.










share|cite|improve this question









$endgroup$




I was thinking a few days ago about the development of topology, especially how you arrive at the concept of a topology $tau$. I knew that a lot of initial ideas came from Hausdorff who defined a topological space by giving neighbourhood axioms; so I had a look at the original text ,,Grundzüge der Mengenlehre'' to see how his definition compares to the contemporary one.



Here is a translation of the ,,Umgebungsaxiome'' that Hausdorff gives:




$(A)~$ To every point $x$, there is some neighbourhood $U_x$; every neighbourhood $U_x$ contains the point $x$.



$(B)~$ If $U_x,V_x$ are two neighbourhoods of the same point $x$, there is a neighbourhood $W_x$, which is in both of them ($W_x subseteq U_x cap V_x$).



$(C)~$ If the point $y$ lies in $U_x$, there is a neighbourhood $U_y$, which is a subset of $U_x$ ($U_y subseteq U_x$).



$(D)~$ For two different points $x,y$ there exist two neighbourhoods $U_x, U_y$ with no common points ($U_x cap U_y = emptyset$).




and here is a version of the neighbourhood axioms you might find in a modern textbook




$mathcalN(x)$ is a set of neighbourhoods for $x$ iff
beginalign*
(0)&~~~ x in bigcap mathcalN(x) \
(1)&~~~ X in mathcalN(x) \
(2)&~~~ forall ~U_1,U_2 in mathcalN(x) : ~ U_1 cap U_2 in mathcalN(x) \
(3)&~~~ forall~ U subseteq X ~~forall~ N in mathcalN(x):~ N subseteq U Longrightarrow U in mathcalN(x) \
(4)&~~~ forall~ U in mathcalN(x) ~~exists~ V in mathcalN(x)~ forall p in V :~ U in mathcalN(p)
endalign*





Here are a few questions I still have after reading and thinking about it:




$(i)$ Are these axiomatic systems equivalent? Even leaving out axiom $(D)$ (since it says that the space is $T_2$) it does not seem to me that they are. A few of them clearly are equivalent, but I don't see how you could derive $(3)$ from $(A) - (C)$. I could at least imagine that one was added over time, which would explain the problem.



$(ii)$ What is the use of axiom $(4)$? I think most helpful to me would be an example of a proof in which the axiom is indispensable.



$(iii)$ (more historically minded question) How did the word ,,Umgebung'' ended up being translated to neighbourhood?




Hausdorff calls a set $U_x$ a ,,Umgebung'' of $x$ which in English (at least in the mathematical literature) is called a neighbourhood. This is quite strange, since neighbourhood has a direct translation to the German: ,,Nachbarschaft'' whose meaning is quite different from the one of ,,Umgebung''. I my opinion the later would be better translated by the word surrounding. Which makes me curious how the translation came about.







general-topology math-history axioms






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 4 hours ago









NemoNemo

845519




845519







  • 3




    $begingroup$
    Neighbourhood in English means "area around someone, close to someone", not being a neighbour, so Umgebung is quite equivalent. In Dutch we also say "omgeving". There is no etymologically close English equivalent to Umgebung AFAIK.
    $endgroup$
    – Henno Brandsma
    3 hours ago













  • 3




    $begingroup$
    Neighbourhood in English means "area around someone, close to someone", not being a neighbour, so Umgebung is quite equivalent. In Dutch we also say "omgeving". There is no etymologically close English equivalent to Umgebung AFAIK.
    $endgroup$
    – Henno Brandsma
    3 hours ago








3




3




$begingroup$
Neighbourhood in English means "area around someone, close to someone", not being a neighbour, so Umgebung is quite equivalent. In Dutch we also say "omgeving". There is no etymologically close English equivalent to Umgebung AFAIK.
$endgroup$
– Henno Brandsma
3 hours ago





$begingroup$
Neighbourhood in English means "area around someone, close to someone", not being a neighbour, so Umgebung is quite equivalent. In Dutch we also say "omgeving". There is no etymologically close English equivalent to Umgebung AFAIK.
$endgroup$
– Henno Brandsma
3 hours ago











2 Answers
2






active

oldest

votes


















5












$begingroup$

Hausdorff axiomatises a set of "basic open neighbourhoods" of $x$ essentially, while the other one axiomatises the more general notion of neighbourhood ($N$ is a neighbourhood of $x$ iff there is an open subset $O$ with $x in O subseteq N$), which form a non-empty filter at each point (which is the summary of axioms (0)-(3) ) and (4) is needed to couple the different neighbourhood systems and make a link to openness: it essentially says that every neighbourhood contains an open neighbourhood (one that is a neighbourhood of each of its points), it ensures that when we define the topology in the usual way from the neighbourhood systems, that $mathcalN_x$ becomes exactly the set of neighbourhoods of $x$ in the newly defined topology too. I gave that proof in full on this site before. See this shorter one and this longer one, e.g.






share|cite|improve this answer











$endgroup$




















    3












    $begingroup$

    The axiom systems are not equivalent. By (C), every neighborhood $U_x$ is an open set. On the other hand, (3) implies that $mathcalN(x)$ is the family of all neighborhoods of $x$, and (4) assures that the members of $mathcalN(x)$ are indeed neighborhoods, i.e. contains $x$ in the interior. So the first system are axioms for (Hausdorff) open neighborhood base, while the second system are axioms for complete neighborhood system. There are also axioms for neighborhood base system, which are slightly weaker than both of these.



    There are various similar axiom systems. In general, you have families of sets $mathcalN(x)$ for $x ∈ X$, and you want to induce a topology as follows: $U ⊆ X$ is open if and only if for every $x ∈ U$ there is $N ∈ mathcalN(x)$ such that $N ⊆ U$. There is a weak set of axioms that assures that this indeed induces a topology. But you may add more axioms if you want more properties like



    • each $N ∈ mathcalN(x)$ is a neighborhood of $x$ (this is not automatical);

    • each $N ∈ mathcalN(x)$ is open;

    • each neighborhood of $x$ is a memnber of $N ∈ mathcalN(x)$.





    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168569%2fsome-questions-about-different-axiomatic-systems-for-neighbourhoods%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      5












      $begingroup$

      Hausdorff axiomatises a set of "basic open neighbourhoods" of $x$ essentially, while the other one axiomatises the more general notion of neighbourhood ($N$ is a neighbourhood of $x$ iff there is an open subset $O$ with $x in O subseteq N$), which form a non-empty filter at each point (which is the summary of axioms (0)-(3) ) and (4) is needed to couple the different neighbourhood systems and make a link to openness: it essentially says that every neighbourhood contains an open neighbourhood (one that is a neighbourhood of each of its points), it ensures that when we define the topology in the usual way from the neighbourhood systems, that $mathcalN_x$ becomes exactly the set of neighbourhoods of $x$ in the newly defined topology too. I gave that proof in full on this site before. See this shorter one and this longer one, e.g.






      share|cite|improve this answer











      $endgroup$

















        5












        $begingroup$

        Hausdorff axiomatises a set of "basic open neighbourhoods" of $x$ essentially, while the other one axiomatises the more general notion of neighbourhood ($N$ is a neighbourhood of $x$ iff there is an open subset $O$ with $x in O subseteq N$), which form a non-empty filter at each point (which is the summary of axioms (0)-(3) ) and (4) is needed to couple the different neighbourhood systems and make a link to openness: it essentially says that every neighbourhood contains an open neighbourhood (one that is a neighbourhood of each of its points), it ensures that when we define the topology in the usual way from the neighbourhood systems, that $mathcalN_x$ becomes exactly the set of neighbourhoods of $x$ in the newly defined topology too. I gave that proof in full on this site before. See this shorter one and this longer one, e.g.






        share|cite|improve this answer











        $endgroup$















          5












          5








          5





          $begingroup$

          Hausdorff axiomatises a set of "basic open neighbourhoods" of $x$ essentially, while the other one axiomatises the more general notion of neighbourhood ($N$ is a neighbourhood of $x$ iff there is an open subset $O$ with $x in O subseteq N$), which form a non-empty filter at each point (which is the summary of axioms (0)-(3) ) and (4) is needed to couple the different neighbourhood systems and make a link to openness: it essentially says that every neighbourhood contains an open neighbourhood (one that is a neighbourhood of each of its points), it ensures that when we define the topology in the usual way from the neighbourhood systems, that $mathcalN_x$ becomes exactly the set of neighbourhoods of $x$ in the newly defined topology too. I gave that proof in full on this site before. See this shorter one and this longer one, e.g.






          share|cite|improve this answer











          $endgroup$



          Hausdorff axiomatises a set of "basic open neighbourhoods" of $x$ essentially, while the other one axiomatises the more general notion of neighbourhood ($N$ is a neighbourhood of $x$ iff there is an open subset $O$ with $x in O subseteq N$), which form a non-empty filter at each point (which is the summary of axioms (0)-(3) ) and (4) is needed to couple the different neighbourhood systems and make a link to openness: it essentially says that every neighbourhood contains an open neighbourhood (one that is a neighbourhood of each of its points), it ensures that when we define the topology in the usual way from the neighbourhood systems, that $mathcalN_x$ becomes exactly the set of neighbourhoods of $x$ in the newly defined topology too. I gave that proof in full on this site before. See this shorter one and this longer one, e.g.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 3 hours ago

























          answered 3 hours ago









          Henno BrandsmaHenno Brandsma

          115k348124




          115k348124





















              3












              $begingroup$

              The axiom systems are not equivalent. By (C), every neighborhood $U_x$ is an open set. On the other hand, (3) implies that $mathcalN(x)$ is the family of all neighborhoods of $x$, and (4) assures that the members of $mathcalN(x)$ are indeed neighborhoods, i.e. contains $x$ in the interior. So the first system are axioms for (Hausdorff) open neighborhood base, while the second system are axioms for complete neighborhood system. There are also axioms for neighborhood base system, which are slightly weaker than both of these.



              There are various similar axiom systems. In general, you have families of sets $mathcalN(x)$ for $x ∈ X$, and you want to induce a topology as follows: $U ⊆ X$ is open if and only if for every $x ∈ U$ there is $N ∈ mathcalN(x)$ such that $N ⊆ U$. There is a weak set of axioms that assures that this indeed induces a topology. But you may add more axioms if you want more properties like



              • each $N ∈ mathcalN(x)$ is a neighborhood of $x$ (this is not automatical);

              • each $N ∈ mathcalN(x)$ is open;

              • each neighborhood of $x$ is a memnber of $N ∈ mathcalN(x)$.





              share|cite|improve this answer









              $endgroup$

















                3












                $begingroup$

                The axiom systems are not equivalent. By (C), every neighborhood $U_x$ is an open set. On the other hand, (3) implies that $mathcalN(x)$ is the family of all neighborhoods of $x$, and (4) assures that the members of $mathcalN(x)$ are indeed neighborhoods, i.e. contains $x$ in the interior. So the first system are axioms for (Hausdorff) open neighborhood base, while the second system are axioms for complete neighborhood system. There are also axioms for neighborhood base system, which are slightly weaker than both of these.



                There are various similar axiom systems. In general, you have families of sets $mathcalN(x)$ for $x ∈ X$, and you want to induce a topology as follows: $U ⊆ X$ is open if and only if for every $x ∈ U$ there is $N ∈ mathcalN(x)$ such that $N ⊆ U$. There is a weak set of axioms that assures that this indeed induces a topology. But you may add more axioms if you want more properties like



                • each $N ∈ mathcalN(x)$ is a neighborhood of $x$ (this is not automatical);

                • each $N ∈ mathcalN(x)$ is open;

                • each neighborhood of $x$ is a memnber of $N ∈ mathcalN(x)$.





                share|cite|improve this answer









                $endgroup$















                  3












                  3








                  3





                  $begingroup$

                  The axiom systems are not equivalent. By (C), every neighborhood $U_x$ is an open set. On the other hand, (3) implies that $mathcalN(x)$ is the family of all neighborhoods of $x$, and (4) assures that the members of $mathcalN(x)$ are indeed neighborhoods, i.e. contains $x$ in the interior. So the first system are axioms for (Hausdorff) open neighborhood base, while the second system are axioms for complete neighborhood system. There are also axioms for neighborhood base system, which are slightly weaker than both of these.



                  There are various similar axiom systems. In general, you have families of sets $mathcalN(x)$ for $x ∈ X$, and you want to induce a topology as follows: $U ⊆ X$ is open if and only if for every $x ∈ U$ there is $N ∈ mathcalN(x)$ such that $N ⊆ U$. There is a weak set of axioms that assures that this indeed induces a topology. But you may add more axioms if you want more properties like



                  • each $N ∈ mathcalN(x)$ is a neighborhood of $x$ (this is not automatical);

                  • each $N ∈ mathcalN(x)$ is open;

                  • each neighborhood of $x$ is a memnber of $N ∈ mathcalN(x)$.





                  share|cite|improve this answer









                  $endgroup$



                  The axiom systems are not equivalent. By (C), every neighborhood $U_x$ is an open set. On the other hand, (3) implies that $mathcalN(x)$ is the family of all neighborhoods of $x$, and (4) assures that the members of $mathcalN(x)$ are indeed neighborhoods, i.e. contains $x$ in the interior. So the first system are axioms for (Hausdorff) open neighborhood base, while the second system are axioms for complete neighborhood system. There are also axioms for neighborhood base system, which are slightly weaker than both of these.



                  There are various similar axiom systems. In general, you have families of sets $mathcalN(x)$ for $x ∈ X$, and you want to induce a topology as follows: $U ⊆ X$ is open if and only if for every $x ∈ U$ there is $N ∈ mathcalN(x)$ such that $N ⊆ U$. There is a weak set of axioms that assures that this indeed induces a topology. But you may add more axioms if you want more properties like



                  • each $N ∈ mathcalN(x)$ is a neighborhood of $x$ (this is not automatical);

                  • each $N ∈ mathcalN(x)$ is open;

                  • each neighborhood of $x$ is a memnber of $N ∈ mathcalN(x)$.






                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 3 hours ago









                  user87690user87690

                  6,6511825




                  6,6511825



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168569%2fsome-questions-about-different-axiomatic-systems-for-neighbourhoods%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Are there any AGPL-style licences that require source code modifications to be public? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Force derivative works to be publicAre there any GPL like licenses for Apple App Store?Do you violate the GPL if you provide source code that cannot be compiled?GPL - is it distribution to use libraries in an appliance loaned to customers?Distributing App for free which uses GPL'ed codeModifications of server software under GPL, with web/CLI interfaceDoes using an AGPLv3-licensed library prevent me from dual-licensing my own source code?Can I publish only select code under GPLv3 from a private project?Is there published precedent regarding the scope of covered work that uses AGPL software?If MIT licensed code links to GPL licensed code what should be the license of the resulting binary program?If I use a public API endpoint that has its source code licensed under AGPL in my app, do I need to disclose my source?

                      2013 GY136 Descoberta | Órbita | Referências Menu de navegação«List Of Centaurs and Scattered-Disk Objects»«List of Known Trans-Neptunian Objects»

                      Button changing it's text & action. Good or terrible? The 2019 Stack Overflow Developer Survey Results Are Inchanging text on user mouseoverShould certain functions be “hard to find” for powerusers to discover?Custom liking function - do I need user login?Using different checkbox style for different checkbox behaviorBest Practices: Save and Exit in Software UIInteraction with remote validated formMore efficient UI to progress the user through a complicated process?Designing a popup notice for a gameShould bulk-editing functions be hidden until a table row is selected, or is there a better solution?Is it bad practice to disable (replace) the context menu?