Diophantine equation 3^a+1=3^b+5^c Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Transforming a Diophantine equation to an elliptic curveNon-negative integer solutions of a single Linear Diophantine EquationDiophantine problemDoes the following Diophantine equation have nontrivial rational solutions?Help with this Diophantine equationHelp with this system of Diophantine equationsThe Theory of Transfinite Diophantine EquationsFind a distinct postive integer solution to this $xyzw=504(x^2+y^2+z^2+w^2)$ diophantine equationExponential diophantine equation systemCombination of $k$-powers and divisibility

Diophantine equation 3^a+1=3^b+5^c



Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)
Announcing the arrival of Valued Associate #679: Cesar Manara
Unicorn Meta Zoo #1: Why another podcast?Transforming a Diophantine equation to an elliptic curveNon-negative integer solutions of a single Linear Diophantine EquationDiophantine problemDoes the following Diophantine equation have nontrivial rational solutions?Help with this Diophantine equationHelp with this system of Diophantine equationsThe Theory of Transfinite Diophantine EquationsFind a distinct postive integer solution to this $xyzw=504(x^2+y^2+z^2+w^2)$ diophantine equationExponential diophantine equation systemCombination of $k$-powers and divisibility










1












$begingroup$


This is not a research problem, but challenging enough that I've decided to post it in here:



Determine all triples $(a,b,c)$ of non-negative integers, satisfying
$$
1+3^a = 3^b+5^c.
$$










share|cite|improve this question









$endgroup$
















    1












    $begingroup$


    This is not a research problem, but challenging enough that I've decided to post it in here:



    Determine all triples $(a,b,c)$ of non-negative integers, satisfying
    $$
    1+3^a = 3^b+5^c.
    $$










    share|cite|improve this question









    $endgroup$














      1












      1








      1





      $begingroup$


      This is not a research problem, but challenging enough that I've decided to post it in here:



      Determine all triples $(a,b,c)$ of non-negative integers, satisfying
      $$
      1+3^a = 3^b+5^c.
      $$










      share|cite|improve this question









      $endgroup$




      This is not a research problem, but challenging enough that I've decided to post it in here:



      Determine all triples $(a,b,c)$ of non-negative integers, satisfying
      $$
      1+3^a = 3^b+5^c.
      $$







      nt.number-theory diophantine-equations elementary-proofs






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 1 hour ago









      kawakawa

      1707




      1707




















          1 Answer
          1






          active

          oldest

          votes


















          5












          $begingroup$

          I can't resist this: The young Chris Skinner showed that if $a$, $b$, $c$, $d$ are fixed positive integers, and $p$ and $q$ are positive coprime integers then the equation
          $$
          ap^x + bq^y = c+ dp^z q^w
          $$

          has a bounded number of solutions in $(x,y,z,w)$ and that a bound on these could be computed (and the equation solved in practice). This solves (in principle) the more general equation $1+3^a 5^d = 3^b+ 5^c$. Anyway, there is a large literature around such exponential diophantine equations, and Skinner's paper will give some references.



          Following a reference from Skinner's paper, Theorem 4.01 of Brenner and Foster gives an explicit treatment of the equation
          $$
          3^a + 7^b=3^c+5^d,
          $$

          which completely resolves the problem in this question (take $b=0$). Their proof is elementary, and the only non-trivial solution to the equation in the question is $3^3+1 = 3 + 5^2$.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Lucia, many thanks for the paper.
            $endgroup$
            – kawa
            35 mins ago











          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "504"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f328619%2fdiophantine-equation-3a1-3b5c%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          5












          $begingroup$

          I can't resist this: The young Chris Skinner showed that if $a$, $b$, $c$, $d$ are fixed positive integers, and $p$ and $q$ are positive coprime integers then the equation
          $$
          ap^x + bq^y = c+ dp^z q^w
          $$

          has a bounded number of solutions in $(x,y,z,w)$ and that a bound on these could be computed (and the equation solved in practice). This solves (in principle) the more general equation $1+3^a 5^d = 3^b+ 5^c$. Anyway, there is a large literature around such exponential diophantine equations, and Skinner's paper will give some references.



          Following a reference from Skinner's paper, Theorem 4.01 of Brenner and Foster gives an explicit treatment of the equation
          $$
          3^a + 7^b=3^c+5^d,
          $$

          which completely resolves the problem in this question (take $b=0$). Their proof is elementary, and the only non-trivial solution to the equation in the question is $3^3+1 = 3 + 5^2$.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Lucia, many thanks for the paper.
            $endgroup$
            – kawa
            35 mins ago















          5












          $begingroup$

          I can't resist this: The young Chris Skinner showed that if $a$, $b$, $c$, $d$ are fixed positive integers, and $p$ and $q$ are positive coprime integers then the equation
          $$
          ap^x + bq^y = c+ dp^z q^w
          $$

          has a bounded number of solutions in $(x,y,z,w)$ and that a bound on these could be computed (and the equation solved in practice). This solves (in principle) the more general equation $1+3^a 5^d = 3^b+ 5^c$. Anyway, there is a large literature around such exponential diophantine equations, and Skinner's paper will give some references.



          Following a reference from Skinner's paper, Theorem 4.01 of Brenner and Foster gives an explicit treatment of the equation
          $$
          3^a + 7^b=3^c+5^d,
          $$

          which completely resolves the problem in this question (take $b=0$). Their proof is elementary, and the only non-trivial solution to the equation in the question is $3^3+1 = 3 + 5^2$.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Lucia, many thanks for the paper.
            $endgroup$
            – kawa
            35 mins ago













          5












          5








          5





          $begingroup$

          I can't resist this: The young Chris Skinner showed that if $a$, $b$, $c$, $d$ are fixed positive integers, and $p$ and $q$ are positive coprime integers then the equation
          $$
          ap^x + bq^y = c+ dp^z q^w
          $$

          has a bounded number of solutions in $(x,y,z,w)$ and that a bound on these could be computed (and the equation solved in practice). This solves (in principle) the more general equation $1+3^a 5^d = 3^b+ 5^c$. Anyway, there is a large literature around such exponential diophantine equations, and Skinner's paper will give some references.



          Following a reference from Skinner's paper, Theorem 4.01 of Brenner and Foster gives an explicit treatment of the equation
          $$
          3^a + 7^b=3^c+5^d,
          $$

          which completely resolves the problem in this question (take $b=0$). Their proof is elementary, and the only non-trivial solution to the equation in the question is $3^3+1 = 3 + 5^2$.






          share|cite|improve this answer











          $endgroup$



          I can't resist this: The young Chris Skinner showed that if $a$, $b$, $c$, $d$ are fixed positive integers, and $p$ and $q$ are positive coprime integers then the equation
          $$
          ap^x + bq^y = c+ dp^z q^w
          $$

          has a bounded number of solutions in $(x,y,z,w)$ and that a bound on these could be computed (and the equation solved in practice). This solves (in principle) the more general equation $1+3^a 5^d = 3^b+ 5^c$. Anyway, there is a large literature around such exponential diophantine equations, and Skinner's paper will give some references.



          Following a reference from Skinner's paper, Theorem 4.01 of Brenner and Foster gives an explicit treatment of the equation
          $$
          3^a + 7^b=3^c+5^d,
          $$

          which completely resolves the problem in this question (take $b=0$). Their proof is elementary, and the only non-trivial solution to the equation in the question is $3^3+1 = 3 + 5^2$.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 10 mins ago

























          answered 39 mins ago









          LuciaLucia

          35k5151177




          35k5151177











          • $begingroup$
            Lucia, many thanks for the paper.
            $endgroup$
            – kawa
            35 mins ago
















          • $begingroup$
            Lucia, many thanks for the paper.
            $endgroup$
            – kawa
            35 mins ago















          $begingroup$
          Lucia, many thanks for the paper.
          $endgroup$
          – kawa
          35 mins ago




          $begingroup$
          Lucia, many thanks for the paper.
          $endgroup$
          – kawa
          35 mins ago

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to MathOverflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f328619%2fdiophantine-equation-3a1-3b5c%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Are there any AGPL-style licences that require source code modifications to be public? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Force derivative works to be publicAre there any GPL like licenses for Apple App Store?Do you violate the GPL if you provide source code that cannot be compiled?GPL - is it distribution to use libraries in an appliance loaned to customers?Distributing App for free which uses GPL'ed codeModifications of server software under GPL, with web/CLI interfaceDoes using an AGPLv3-licensed library prevent me from dual-licensing my own source code?Can I publish only select code under GPLv3 from a private project?Is there published precedent regarding the scope of covered work that uses AGPL software?If MIT licensed code links to GPL licensed code what should be the license of the resulting binary program?If I use a public API endpoint that has its source code licensed under AGPL in my app, do I need to disclose my source?

          2013 GY136 Descoberta | Órbita | Referências Menu de navegação«List Of Centaurs and Scattered-Disk Objects»«List of Known Trans-Neptunian Objects»

          Metrô de Los Teques Índice Linhas | Estações | Ver também | Referências Ligações externas | Menu de navegação«INSTITUCIÓN»«Mapa de rutas»originalMetrô de Los TequesC.A. Metro Los Teques |Alcaldía de Guaicaipuro – Sitio OficialGobernacion de Mirandaeeeeeee