How do I solve this limit? The Next CEO of Stack Overflowrational limit problemHow to evaluate the following limit? $limlimits_xtoinftyxleft(fracpi2-arctan xright).$Limit only using squeeze theorem $ lim_(x,y)to(0,2) x,arctanleft(frac1y-2right)$How to calculate this limit at infinity?How can I use the Limit Laws to solve this limit?How do I even start approaching this limit?how can I find this limitHow to solve this limit without L'Hospital?How to solve this limit when direct substitution fails. Why do this work?L'Hôpital's rule - How solve this limit question

ls Ordering[Ordering[list]] optimal?

Why does standard notation not preserve intervals (visually)

What is the purpose of the Evocation wizard's Potent Cantrip feature?

Anatomically Correct Strange Women In Ponds Distributing Swords

Describing a person. What needs to be mentioned?

How to make a variable always equal to the result of some calculations?

Why were Madagascar and New Zealand discovered so late?

Is HostGator storing my password in plaintext?

How do we know the LHC results are robust?

Does the Brexit deal have to be agreed by both Houses?

Trouble understanding the speech of overseas colleagues

Why didn't Khan get resurrected in the Genesis Explosion?

Is it okay to store user locations?

How can I get through very long and very dry, but also very useful technical documents when learning a new tool?

Is a stroke of luck acceptable after a series of unfavorable events?

Why here is plural "We went to the movies last night."

WOW air has ceased operation, can I get my tickets refunded?

How to write papers efficiently when English isn't my first language?

How to start emacs in "nothing" mode (`fundamental-mode`)

Why do professional authors make "consistency" mistakes? And how to avoid them?

Are there languages with no euphemisms?

Fastest way to shutdown Ubuntu Mate 18.10

Anatomically Correct Mesopelagic Aves

How do I solve this limit?



How do I solve this limit?



The Next CEO of Stack Overflowrational limit problemHow to evaluate the following limit? $limlimits_xtoinftyxleft(fracpi2-arctan xright).$Limit only using squeeze theorem $ lim_(x,y)to(0,2) x,arctanleft(frac1y-2right)$How to calculate this limit at infinity?How can I use the Limit Laws to solve this limit?How do I even start approaching this limit?how can I find this limitHow to solve this limit without L'Hospital?How to solve this limit when direct substitution fails. Why do this work?L'Hôpital's rule - How solve this limit question










1












$begingroup$


How do I solve:



$$
lim_x to 0left[1 - xarctanleft(nxright)right]^, 1/x^2
$$



I know the answer is $e^-n$ for every n > 1, but for the life of me I have no idea how to actually get to that answer. Am I supposed to use a common limit or any theorem? Also, why isn't the limit equal to 1?



Thanks.










share|cite|improve this question









New contributor




radoo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    I accidentally put k instead of n, sorry.
    $endgroup$
    – radoo
    2 hours ago










  • $begingroup$
    You can take the logarithm of the function and use L'Hopitals rule
    $endgroup$
    – Nimish
    2 hours ago















1












$begingroup$


How do I solve:



$$
lim_x to 0left[1 - xarctanleft(nxright)right]^, 1/x^2
$$



I know the answer is $e^-n$ for every n > 1, but for the life of me I have no idea how to actually get to that answer. Am I supposed to use a common limit or any theorem? Also, why isn't the limit equal to 1?



Thanks.










share|cite|improve this question









New contributor




radoo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    I accidentally put k instead of n, sorry.
    $endgroup$
    – radoo
    2 hours ago










  • $begingroup$
    You can take the logarithm of the function and use L'Hopitals rule
    $endgroup$
    – Nimish
    2 hours ago













1












1








1





$begingroup$


How do I solve:



$$
lim_x to 0left[1 - xarctanleft(nxright)right]^, 1/x^2
$$



I know the answer is $e^-n$ for every n > 1, but for the life of me I have no idea how to actually get to that answer. Am I supposed to use a common limit or any theorem? Also, why isn't the limit equal to 1?



Thanks.










share|cite|improve this question









New contributor




radoo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




How do I solve:



$$
lim_x to 0left[1 - xarctanleft(nxright)right]^, 1/x^2
$$



I know the answer is $e^-n$ for every n > 1, but for the life of me I have no idea how to actually get to that answer. Am I supposed to use a common limit or any theorem? Also, why isn't the limit equal to 1?



Thanks.







calculus limits






share|cite|improve this question









New contributor




radoo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




radoo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 1 hour ago









Felix Marin

68.8k7109146




68.8k7109146






New contributor




radoo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 2 hours ago









radooradoo

84




84




New contributor




radoo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





radoo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






radoo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    I accidentally put k instead of n, sorry.
    $endgroup$
    – radoo
    2 hours ago










  • $begingroup$
    You can take the logarithm of the function and use L'Hopitals rule
    $endgroup$
    – Nimish
    2 hours ago
















  • $begingroup$
    I accidentally put k instead of n, sorry.
    $endgroup$
    – radoo
    2 hours ago










  • $begingroup$
    You can take the logarithm of the function and use L'Hopitals rule
    $endgroup$
    – Nimish
    2 hours ago















$begingroup$
I accidentally put k instead of n, sorry.
$endgroup$
– radoo
2 hours ago




$begingroup$
I accidentally put k instead of n, sorry.
$endgroup$
– radoo
2 hours ago












$begingroup$
You can take the logarithm of the function and use L'Hopitals rule
$endgroup$
– Nimish
2 hours ago




$begingroup$
You can take the logarithm of the function and use L'Hopitals rule
$endgroup$
– Nimish
2 hours ago










3 Answers
3






active

oldest

votes


















3












$begingroup$

You can do it the following way:



$$
lim_xto 0 (1-xarctan(nx))^1/x^2 = lim_xto 0 e^log((1-xarctan(nx))^1/x^2)
$$



doing some algebra on the exponent:
$$
lim_xto 0 exp(log((1-xarctan(nx))^1/x^2)) = lim_xto 0 expleft(fraclog((1-xarctan(nx))x^2)right)
$$



by limit rules:



$$
lim_xto 0 expleft(fraclog((1-xarctan(nx))x^2)right) =expleft[ lim_xto 0 left(fraclog((1-xarctan(nx))x^2)right)right]
$$



apply L'Hospital's rule and after some algebra you should get:
$$
expleft[- fracn+lim_xto 0 fracarctan(nx)x+n^2lim_xto 0 xarctan(nx)2right]
$$



simplifying



$$
expleft(-fracn+n+n^22right) = e^-n
$$






share|cite|improve this answer









$endgroup$




















    2












    $begingroup$

    Hint: $lim_xto 0 (1-nx)^(1/x)=e^-n$



    Also look at the Taylor expansion of the arctan






    share|cite|improve this answer









    $endgroup$




















      0












      $begingroup$

      Noting that $u=xarctan nxto0$ and $(arctan nx)/xto n$ as $xto 0$, we have



      $$(1-xarctan nx)^1/x^2=((1-xarctan nx)^1/(xarctan nx))^(arctan nx)/x=((1-u)^1/u)^(arctan nx)/xto (e^-1)^n=e^-n$$



      using the general limit property $lim f(x)^g(x)=(lim f(x))^lim g(x)$, provided $lim f(x)$ and $lim g(x)$ both exist (with $lim f(x)ge0$) and are not both $0$.






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );






        radoo is a new contributor. Be nice, and check out our Code of Conduct.









        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3166364%2fhow-do-i-solve-this-limit%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        3












        $begingroup$

        You can do it the following way:



        $$
        lim_xto 0 (1-xarctan(nx))^1/x^2 = lim_xto 0 e^log((1-xarctan(nx))^1/x^2)
        $$



        doing some algebra on the exponent:
        $$
        lim_xto 0 exp(log((1-xarctan(nx))^1/x^2)) = lim_xto 0 expleft(fraclog((1-xarctan(nx))x^2)right)
        $$



        by limit rules:



        $$
        lim_xto 0 expleft(fraclog((1-xarctan(nx))x^2)right) =expleft[ lim_xto 0 left(fraclog((1-xarctan(nx))x^2)right)right]
        $$



        apply L'Hospital's rule and after some algebra you should get:
        $$
        expleft[- fracn+lim_xto 0 fracarctan(nx)x+n^2lim_xto 0 xarctan(nx)2right]
        $$



        simplifying



        $$
        expleft(-fracn+n+n^22right) = e^-n
        $$






        share|cite|improve this answer









        $endgroup$

















          3












          $begingroup$

          You can do it the following way:



          $$
          lim_xto 0 (1-xarctan(nx))^1/x^2 = lim_xto 0 e^log((1-xarctan(nx))^1/x^2)
          $$



          doing some algebra on the exponent:
          $$
          lim_xto 0 exp(log((1-xarctan(nx))^1/x^2)) = lim_xto 0 expleft(fraclog((1-xarctan(nx))x^2)right)
          $$



          by limit rules:



          $$
          lim_xto 0 expleft(fraclog((1-xarctan(nx))x^2)right) =expleft[ lim_xto 0 left(fraclog((1-xarctan(nx))x^2)right)right]
          $$



          apply L'Hospital's rule and after some algebra you should get:
          $$
          expleft[- fracn+lim_xto 0 fracarctan(nx)x+n^2lim_xto 0 xarctan(nx)2right]
          $$



          simplifying



          $$
          expleft(-fracn+n+n^22right) = e^-n
          $$






          share|cite|improve this answer









          $endgroup$















            3












            3








            3





            $begingroup$

            You can do it the following way:



            $$
            lim_xto 0 (1-xarctan(nx))^1/x^2 = lim_xto 0 e^log((1-xarctan(nx))^1/x^2)
            $$



            doing some algebra on the exponent:
            $$
            lim_xto 0 exp(log((1-xarctan(nx))^1/x^2)) = lim_xto 0 expleft(fraclog((1-xarctan(nx))x^2)right)
            $$



            by limit rules:



            $$
            lim_xto 0 expleft(fraclog((1-xarctan(nx))x^2)right) =expleft[ lim_xto 0 left(fraclog((1-xarctan(nx))x^2)right)right]
            $$



            apply L'Hospital's rule and after some algebra you should get:
            $$
            expleft[- fracn+lim_xto 0 fracarctan(nx)x+n^2lim_xto 0 xarctan(nx)2right]
            $$



            simplifying



            $$
            expleft(-fracn+n+n^22right) = e^-n
            $$






            share|cite|improve this answer









            $endgroup$



            You can do it the following way:



            $$
            lim_xto 0 (1-xarctan(nx))^1/x^2 = lim_xto 0 e^log((1-xarctan(nx))^1/x^2)
            $$



            doing some algebra on the exponent:
            $$
            lim_xto 0 exp(log((1-xarctan(nx))^1/x^2)) = lim_xto 0 expleft(fraclog((1-xarctan(nx))x^2)right)
            $$



            by limit rules:



            $$
            lim_xto 0 expleft(fraclog((1-xarctan(nx))x^2)right) =expleft[ lim_xto 0 left(fraclog((1-xarctan(nx))x^2)right)right]
            $$



            apply L'Hospital's rule and after some algebra you should get:
            $$
            expleft[- fracn+lim_xto 0 fracarctan(nx)x+n^2lim_xto 0 xarctan(nx)2right]
            $$



            simplifying



            $$
            expleft(-fracn+n+n^22right) = e^-n
            $$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 1 hour ago









            DashiDashi

            726311




            726311





















                2












                $begingroup$

                Hint: $lim_xto 0 (1-nx)^(1/x)=e^-n$



                Also look at the Taylor expansion of the arctan






                share|cite|improve this answer









                $endgroup$

















                  2












                  $begingroup$

                  Hint: $lim_xto 0 (1-nx)^(1/x)=e^-n$



                  Also look at the Taylor expansion of the arctan






                  share|cite|improve this answer









                  $endgroup$















                    2












                    2








                    2





                    $begingroup$

                    Hint: $lim_xto 0 (1-nx)^(1/x)=e^-n$



                    Also look at the Taylor expansion of the arctan






                    share|cite|improve this answer









                    $endgroup$



                    Hint: $lim_xto 0 (1-nx)^(1/x)=e^-n$



                    Also look at the Taylor expansion of the arctan







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 2 hours ago









                    A. PA. P

                    1386




                    1386





















                        0












                        $begingroup$

                        Noting that $u=xarctan nxto0$ and $(arctan nx)/xto n$ as $xto 0$, we have



                        $$(1-xarctan nx)^1/x^2=((1-xarctan nx)^1/(xarctan nx))^(arctan nx)/x=((1-u)^1/u)^(arctan nx)/xto (e^-1)^n=e^-n$$



                        using the general limit property $lim f(x)^g(x)=(lim f(x))^lim g(x)$, provided $lim f(x)$ and $lim g(x)$ both exist (with $lim f(x)ge0$) and are not both $0$.






                        share|cite|improve this answer









                        $endgroup$

















                          0












                          $begingroup$

                          Noting that $u=xarctan nxto0$ and $(arctan nx)/xto n$ as $xto 0$, we have



                          $$(1-xarctan nx)^1/x^2=((1-xarctan nx)^1/(xarctan nx))^(arctan nx)/x=((1-u)^1/u)^(arctan nx)/xto (e^-1)^n=e^-n$$



                          using the general limit property $lim f(x)^g(x)=(lim f(x))^lim g(x)$, provided $lim f(x)$ and $lim g(x)$ both exist (with $lim f(x)ge0$) and are not both $0$.






                          share|cite|improve this answer









                          $endgroup$















                            0












                            0








                            0





                            $begingroup$

                            Noting that $u=xarctan nxto0$ and $(arctan nx)/xto n$ as $xto 0$, we have



                            $$(1-xarctan nx)^1/x^2=((1-xarctan nx)^1/(xarctan nx))^(arctan nx)/x=((1-u)^1/u)^(arctan nx)/xto (e^-1)^n=e^-n$$



                            using the general limit property $lim f(x)^g(x)=(lim f(x))^lim g(x)$, provided $lim f(x)$ and $lim g(x)$ both exist (with $lim f(x)ge0$) and are not both $0$.






                            share|cite|improve this answer









                            $endgroup$



                            Noting that $u=xarctan nxto0$ and $(arctan nx)/xto n$ as $xto 0$, we have



                            $$(1-xarctan nx)^1/x^2=((1-xarctan nx)^1/(xarctan nx))^(arctan nx)/x=((1-u)^1/u)^(arctan nx)/xto (e^-1)^n=e^-n$$



                            using the general limit property $lim f(x)^g(x)=(lim f(x))^lim g(x)$, provided $lim f(x)$ and $lim g(x)$ both exist (with $lim f(x)ge0$) and are not both $0$.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 53 mins ago









                            Barry CipraBarry Cipra

                            60.5k655128




                            60.5k655128




















                                radoo is a new contributor. Be nice, and check out our Code of Conduct.









                                draft saved

                                draft discarded


















                                radoo is a new contributor. Be nice, and check out our Code of Conduct.












                                radoo is a new contributor. Be nice, and check out our Code of Conduct.











                                radoo is a new contributor. Be nice, and check out our Code of Conduct.














                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3166364%2fhow-do-i-solve-this-limit%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Are there any AGPL-style licences that require source code modifications to be public? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Force derivative works to be publicAre there any GPL like licenses for Apple App Store?Do you violate the GPL if you provide source code that cannot be compiled?GPL - is it distribution to use libraries in an appliance loaned to customers?Distributing App for free which uses GPL'ed codeModifications of server software under GPL, with web/CLI interfaceDoes using an AGPLv3-licensed library prevent me from dual-licensing my own source code?Can I publish only select code under GPLv3 from a private project?Is there published precedent regarding the scope of covered work that uses AGPL software?If MIT licensed code links to GPL licensed code what should be the license of the resulting binary program?If I use a public API endpoint that has its source code licensed under AGPL in my app, do I need to disclose my source?

                                2013 GY136 Descoberta | Órbita | Referências Menu de navegação«List Of Centaurs and Scattered-Disk Objects»«List of Known Trans-Neptunian Objects»

                                Mortes em março de 2019 Referências Menu de navegação«Zhores Alferov, Nobel de Física bielorrusso, morre aos 88 anos - Ciência»«Fallece Rafael Torija, o bispo emérito de Ciudad Real»«Peter Hurford dies at 88»«Keith Flint, vocalista do The Prodigy, morre aos 49 anos»«Luke Perry, ator de 'Barrados no baile' e 'Riverdale', morre aos 52 anos»«Former Rangers and Scotland captain Eric Caldow dies, aged 84»«Morreu, aos 61 anos, a antiga lenda do wrestling King Kong Bundy»«Fallece el actor y director teatral Abraham Stavans»«In Memoriam Guillaume Faye»«Sidney Sheinberg, a Force Behind Universal and Spielberg, Is Dead at 84»«Carmine Persico, Colombo Crime Family Boss, Is Dead at 85»«Dirigent Michael Gielen gestorben»«Ciclista tricampeã mundial e prata na Rio 2016 é encontrada morta em casa aos 23 anos»«Pagan Community Notes: Raven Grimassi dies, Indianapolis pop-up event cancelled, Circle Sanctuary announces new podcast, and more!»«Hal Blaine, Wrecking Crew Drummer, Dies at 90»«Morre Coutinho, que editou dupla lendária com Pelé no Santos»«Cantor Demétrius, ídolo da Jovem Guarda, morre em SP»«Ex-presidente do Vasco, Eurico Miranda morre no Rio de Janeiro»«Bronze no Mundial de basquete de 1971, Laís Elena morre aos 76 anos»«Diretor de Corridas da F1, Charlie Whiting morre aos 66 anos às vésperas do GP da Austrália»«Morreu o cardeal Danneels, da Bélgica»«Morreu o cartoonista Augusto Cid»«Morreu a atriz Maria Isabel de Lizandra, de "Vale Tudo" e novelas da Tupi»«WS Merwin, prize-winning poet of nature, dies at 91»«Atriz Márcia Real morre em São Paulo aos 88 anos»«Mauritanie: décès de l'ancien président Mohamed Mahmoud ould Louly»«Morreu Dick Dale, o rei da surf guitar e de "Pulp Fiction"»«Falleció Víctor Genes»«João Carlos Marinho, autor de 'O Gênio do Crime', morre em SP»«Legendary Horror Director and SFX Artist John Carl Buechler Dies at 66»«Morre em Salvador a religiosa Makota Valdina»«مرگ بازیکن‌ سابق نساجی بر اثر سقوط سنگ در مازندران»«Domingos Oliveira morre no Rio»«Morre Airton Ravagniani, ex-São Paulo, Fla, Vasco, Grêmio e Sport - Notícias»«Morre o escritor Flavio Moreira da Costa»«Larry Cohen, Writer-Director of 'It's Alive' and 'Hell Up in Harlem,' Dies at 77»«Scott Walker, experimental singer-songwriter, dead at 76»«Joseph Pilato, Day of the Dead Star and Horror Favorite, Dies at 70»«Sheffield United set to pay tribute to legendary goalkeeper Ted Burgin who has died at 91»«Morre Rafael Henzel, sobrevivente de acidente aéreo da Chapecoense»«Morre Valery Bykovsky, um dos primeiros cosmonautas da União Soviética»«Agnès Varda, cineasta da Nouvelle Vague, morre aos 90 anos»«Agnès Varda, cineasta francesa, morre aos 90 anos»«Tania Mallet, James Bond Actress and Helen Mirren's Cousin, Dies at 77»e