Circuit to “zoom in” on mV fluctuations of a DC signal? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Increasing precision of a practical opamp circuit when the input signal is very small40kHz signal amplifier with ua741Amplifying a decaying signal to a signal of uniform amplitudeHelp comparator circuit for this PWM signal inverterCircuit design question - low pass filterVirtual Earth - Signal ConnectionA question about choosing, implementing and placing a strain-gauge amplifierCircuit for squaring (raise to power 2) signalHow can I use a comparator in a circuit?Quadrature Encoder Interface Circuit

Do I really need to have a message in a novel to appeal to readers?

Denied boarding although I have proper visa and documentation. To whom should I make a complaint?

How to react to hostile behavior from a senior developer?

Is there such thing as an Availability Group failover trigger?

What is the longest distance a player character can jump in one leap?

Ports Showing Closed/Filtered in Nmap Scans

8 Prisoners wearing hats

Trademark violation for app?

Can melee weapons be used to deliver Contact Poisons?

Does classifying an integer as a discrete log require it be part of a multiplicative group?

Why are there no cargo aircraft with "flying wing" design?

Do I really need recursive chmod to restrict access to a folder?

What does this Jacques Hadamard quote mean?

How to convince students of the implication truth values?

Can anything be seen from the center of the Boötes void? How dark would it be?

Would "destroying" Wurmcoil Engine prevent its tokens from being created?

2001: A Space Odyssey's use of the song "Daisy Bell" (Bicycle Built for Two); life imitates art or vice-versa?

How to show element name in portuguese using elements package?

Most bit efficient text communication method?

Using audio cues to encourage good posture

Why do the resolve message appear first?

Amount of permutations on an NxNxN Rubik's Cube

How to find 'n' nodes where all distances between them are greater than 'k'?

An adverb for when you're not exaggerating



Circuit to “zoom in” on mV fluctuations of a DC signal?



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Increasing precision of a practical opamp circuit when the input signal is very small40kHz signal amplifier with ua741Amplifying a decaying signal to a signal of uniform amplitudeHelp comparator circuit for this PWM signal inverterCircuit design question - low pass filterVirtual Earth - Signal ConnectionA question about choosing, implementing and placing a strain-gauge amplifierCircuit for squaring (raise to power 2) signalHow can I use a comparator in a circuit?Quadrature Encoder Interface Circuit



.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








2












$begingroup$


I have a signal that is roughly 0.2V + noise fluctuations of order 0.1-2 mV. Ideally I want to amplify this signal such that the mV fluctuations become about 1V. In other words I want to amplify the signal by about 1000x.



However, if I flat out amplify the signal, the total signal becomes 200V + 1V fluctuations, which I can't reasonably read on some bench top DAQ (0-10V range).



Is there some combination of circuit elements that can take my input 0.2V + 1mV signal and spit out only the amplified fluctuations (i.e. 0V + 1V fluctuations)?



edit: I should say that these fluctuations are controlled by me physically squeezing a pressure gauge, so they aren't necessarily high frequency. Basically the signal rises to 0.202V when I squeeze, and 0.200V when I let go. I want to see that excess 0.002V blown up to 1V, but I may be squeezing and letting go slowly in general.










share|improve this question









New contributor




Marty is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    Are you interested in the signal? Or the noise? I can't tell from the writing. I'd normally assume that you don't want the signal part. But I'd rather not assume. Instead, just ask.
    $endgroup$
    – jonk
    34 mins ago


















2












$begingroup$


I have a signal that is roughly 0.2V + noise fluctuations of order 0.1-2 mV. Ideally I want to amplify this signal such that the mV fluctuations become about 1V. In other words I want to amplify the signal by about 1000x.



However, if I flat out amplify the signal, the total signal becomes 200V + 1V fluctuations, which I can't reasonably read on some bench top DAQ (0-10V range).



Is there some combination of circuit elements that can take my input 0.2V + 1mV signal and spit out only the amplified fluctuations (i.e. 0V + 1V fluctuations)?



edit: I should say that these fluctuations are controlled by me physically squeezing a pressure gauge, so they aren't necessarily high frequency. Basically the signal rises to 0.202V when I squeeze, and 0.200V when I let go. I want to see that excess 0.002V blown up to 1V, but I may be squeezing and letting go slowly in general.










share|improve this question









New contributor




Marty is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    Are you interested in the signal? Or the noise? I can't tell from the writing. I'd normally assume that you don't want the signal part. But I'd rather not assume. Instead, just ask.
    $endgroup$
    – jonk
    34 mins ago














2












2








2





$begingroup$


I have a signal that is roughly 0.2V + noise fluctuations of order 0.1-2 mV. Ideally I want to amplify this signal such that the mV fluctuations become about 1V. In other words I want to amplify the signal by about 1000x.



However, if I flat out amplify the signal, the total signal becomes 200V + 1V fluctuations, which I can't reasonably read on some bench top DAQ (0-10V range).



Is there some combination of circuit elements that can take my input 0.2V + 1mV signal and spit out only the amplified fluctuations (i.e. 0V + 1V fluctuations)?



edit: I should say that these fluctuations are controlled by me physically squeezing a pressure gauge, so they aren't necessarily high frequency. Basically the signal rises to 0.202V when I squeeze, and 0.200V when I let go. I want to see that excess 0.002V blown up to 1V, but I may be squeezing and letting go slowly in general.










share|improve this question









New contributor




Marty is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




I have a signal that is roughly 0.2V + noise fluctuations of order 0.1-2 mV. Ideally I want to amplify this signal such that the mV fluctuations become about 1V. In other words I want to amplify the signal by about 1000x.



However, if I flat out amplify the signal, the total signal becomes 200V + 1V fluctuations, which I can't reasonably read on some bench top DAQ (0-10V range).



Is there some combination of circuit elements that can take my input 0.2V + 1mV signal and spit out only the amplified fluctuations (i.e. 0V + 1V fluctuations)?



edit: I should say that these fluctuations are controlled by me physically squeezing a pressure gauge, so they aren't necessarily high frequency. Basically the signal rises to 0.202V when I squeeze, and 0.200V when I let go. I want to see that excess 0.002V blown up to 1V, but I may be squeezing and letting go slowly in general.







operational-amplifier amplifier circuit-design signal-processing






share|improve this question









New contributor




Marty is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question









New contributor




Marty is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question








edited 30 mins ago







Marty













New contributor




Marty is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 57 mins ago









MartyMarty

112




112




New contributor




Marty is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Marty is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Marty is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    Are you interested in the signal? Or the noise? I can't tell from the writing. I'd normally assume that you don't want the signal part. But I'd rather not assume. Instead, just ask.
    $endgroup$
    – jonk
    34 mins ago

















  • $begingroup$
    Are you interested in the signal? Or the noise? I can't tell from the writing. I'd normally assume that you don't want the signal part. But I'd rather not assume. Instead, just ask.
    $endgroup$
    – jonk
    34 mins ago
















$begingroup$
Are you interested in the signal? Or the noise? I can't tell from the writing. I'd normally assume that you don't want the signal part. But I'd rather not assume. Instead, just ask.
$endgroup$
– jonk
34 mins ago





$begingroup$
Are you interested in the signal? Or the noise? I can't tell from the writing. I'd normally assume that you don't want the signal part. But I'd rather not assume. Instead, just ask.
$endgroup$
– jonk
34 mins ago











3 Answers
3






active

oldest

votes


















3












$begingroup$

Capacitors block DC and pass AC.



You can use a series capacitor into an opamp with whatever gain you need.



Even better might be a simple RC high-pass filter...One capacitor (series) and one resistor (to ground) in front of your amplifier.



Like this:





schematic





simulate this circuit – Schematic created using CircuitLab



R2 and R3 set your gain. C1 and R1 set your low frequency cut-off. The formula you use to find the cutoff is:



$$Ftext(Hz) = frac12 pi R C$$






share|improve this answer











$endgroup$












  • $begingroup$
    Thank you for your answer! If you see my edit: will the capacitor block out the fluctuations if they aren't very fast (maybe a quick squeeze/release every 2 seconds)? i.e. a voltage difference when I squeeze a pressure gauge (squeezing vs not squeezing is only a ~1mV signal added to the 0.2V DC)
    $endgroup$
    – Marty
    29 mins ago











  • $begingroup$
    Yes, you will need to choose C1 and R1 based on the slowest change you wish to see. The formula you use to find the cutoff is: F(Hz) = 1 / (2 * pi * R * C)
    $endgroup$
    – evildemonic
    28 mins ago











  • $begingroup$
    Sorry, I am still trying to figure out how to insert the nice looking equations others use here.
    $endgroup$
    – evildemonic
    24 mins ago






  • 1




    $begingroup$
    It's called "MathJax". I've added your formula to your answer to show you how it's done. You can learn more by clicking on the help icon in the editor, select "Advanced Help" and scroll down to the section labeled "LaTeX", which also has a link to MathJax specifically. There's also this post on meta, which provides a link to a number of quick references and other resources.
    $endgroup$
    – Dave Tweed
    19 mins ago







  • 1




    $begingroup$
    So if I wanted a gain of 1000 and a cutoff of 1 Hz, the following values might work? C1=100 uF, R1=1.5k ohm, R2=100k ohm, R3=100 ohm
    $endgroup$
    – Marty
    17 mins ago


















1












$begingroup$

Use a coupling capacitor prior to the amplifier. The DC signal will be blocked but the fluctuations will pass through.






share|improve this answer









$endgroup$




















    0












    $begingroup$

    Digital designer here so I'm not certain, but...



    The other answers assume high-frequency fluctuations. Instead you want to subtract the 0.2 V and amplify that. You can use a summing amplifier to subtract the offset, if you've got positive and negative supply voltages. I think you can also use an inverting configuration where the non-inverting input is at 0.2V instead of ground.






    share|improve this answer









    $endgroup$













      Your Answer






      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("schematics", function ()
      StackExchange.schematics.init();
      );
      , "cicuitlab");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "135"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );






      Marty is a new contributor. Be nice, and check out our Code of Conduct.









      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f433132%2fcircuit-to-zoom-in-on-mv-fluctuations-of-a-dc-signal%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3












      $begingroup$

      Capacitors block DC and pass AC.



      You can use a series capacitor into an opamp with whatever gain you need.



      Even better might be a simple RC high-pass filter...One capacitor (series) and one resistor (to ground) in front of your amplifier.



      Like this:





      schematic





      simulate this circuit – Schematic created using CircuitLab



      R2 and R3 set your gain. C1 and R1 set your low frequency cut-off. The formula you use to find the cutoff is:



      $$Ftext(Hz) = frac12 pi R C$$






      share|improve this answer











      $endgroup$












      • $begingroup$
        Thank you for your answer! If you see my edit: will the capacitor block out the fluctuations if they aren't very fast (maybe a quick squeeze/release every 2 seconds)? i.e. a voltage difference when I squeeze a pressure gauge (squeezing vs not squeezing is only a ~1mV signal added to the 0.2V DC)
        $endgroup$
        – Marty
        29 mins ago











      • $begingroup$
        Yes, you will need to choose C1 and R1 based on the slowest change you wish to see. The formula you use to find the cutoff is: F(Hz) = 1 / (2 * pi * R * C)
        $endgroup$
        – evildemonic
        28 mins ago











      • $begingroup$
        Sorry, I am still trying to figure out how to insert the nice looking equations others use here.
        $endgroup$
        – evildemonic
        24 mins ago






      • 1




        $begingroup$
        It's called "MathJax". I've added your formula to your answer to show you how it's done. You can learn more by clicking on the help icon in the editor, select "Advanced Help" and scroll down to the section labeled "LaTeX", which also has a link to MathJax specifically. There's also this post on meta, which provides a link to a number of quick references and other resources.
        $endgroup$
        – Dave Tweed
        19 mins ago







      • 1




        $begingroup$
        So if I wanted a gain of 1000 and a cutoff of 1 Hz, the following values might work? C1=100 uF, R1=1.5k ohm, R2=100k ohm, R3=100 ohm
        $endgroup$
        – Marty
        17 mins ago















      3












      $begingroup$

      Capacitors block DC and pass AC.



      You can use a series capacitor into an opamp with whatever gain you need.



      Even better might be a simple RC high-pass filter...One capacitor (series) and one resistor (to ground) in front of your amplifier.



      Like this:





      schematic





      simulate this circuit – Schematic created using CircuitLab



      R2 and R3 set your gain. C1 and R1 set your low frequency cut-off. The formula you use to find the cutoff is:



      $$Ftext(Hz) = frac12 pi R C$$






      share|improve this answer











      $endgroup$












      • $begingroup$
        Thank you for your answer! If you see my edit: will the capacitor block out the fluctuations if they aren't very fast (maybe a quick squeeze/release every 2 seconds)? i.e. a voltage difference when I squeeze a pressure gauge (squeezing vs not squeezing is only a ~1mV signal added to the 0.2V DC)
        $endgroup$
        – Marty
        29 mins ago











      • $begingroup$
        Yes, you will need to choose C1 and R1 based on the slowest change you wish to see. The formula you use to find the cutoff is: F(Hz) = 1 / (2 * pi * R * C)
        $endgroup$
        – evildemonic
        28 mins ago











      • $begingroup$
        Sorry, I am still trying to figure out how to insert the nice looking equations others use here.
        $endgroup$
        – evildemonic
        24 mins ago






      • 1




        $begingroup$
        It's called "MathJax". I've added your formula to your answer to show you how it's done. You can learn more by clicking on the help icon in the editor, select "Advanced Help" and scroll down to the section labeled "LaTeX", which also has a link to MathJax specifically. There's also this post on meta, which provides a link to a number of quick references and other resources.
        $endgroup$
        – Dave Tweed
        19 mins ago







      • 1




        $begingroup$
        So if I wanted a gain of 1000 and a cutoff of 1 Hz, the following values might work? C1=100 uF, R1=1.5k ohm, R2=100k ohm, R3=100 ohm
        $endgroup$
        – Marty
        17 mins ago













      3












      3








      3





      $begingroup$

      Capacitors block DC and pass AC.



      You can use a series capacitor into an opamp with whatever gain you need.



      Even better might be a simple RC high-pass filter...One capacitor (series) and one resistor (to ground) in front of your amplifier.



      Like this:





      schematic





      simulate this circuit – Schematic created using CircuitLab



      R2 and R3 set your gain. C1 and R1 set your low frequency cut-off. The formula you use to find the cutoff is:



      $$Ftext(Hz) = frac12 pi R C$$






      share|improve this answer











      $endgroup$



      Capacitors block DC and pass AC.



      You can use a series capacitor into an opamp with whatever gain you need.



      Even better might be a simple RC high-pass filter...One capacitor (series) and one resistor (to ground) in front of your amplifier.



      Like this:





      schematic





      simulate this circuit – Schematic created using CircuitLab



      R2 and R3 set your gain. C1 and R1 set your low frequency cut-off. The formula you use to find the cutoff is:



      $$Ftext(Hz) = frac12 pi R C$$







      share|improve this answer














      share|improve this answer



      share|improve this answer








      edited 20 mins ago









      Dave Tweed

      125k10155269




      125k10155269










      answered 51 mins ago









      evildemonicevildemonic

      2,643922




      2,643922











      • $begingroup$
        Thank you for your answer! If you see my edit: will the capacitor block out the fluctuations if they aren't very fast (maybe a quick squeeze/release every 2 seconds)? i.e. a voltage difference when I squeeze a pressure gauge (squeezing vs not squeezing is only a ~1mV signal added to the 0.2V DC)
        $endgroup$
        – Marty
        29 mins ago











      • $begingroup$
        Yes, you will need to choose C1 and R1 based on the slowest change you wish to see. The formula you use to find the cutoff is: F(Hz) = 1 / (2 * pi * R * C)
        $endgroup$
        – evildemonic
        28 mins ago











      • $begingroup$
        Sorry, I am still trying to figure out how to insert the nice looking equations others use here.
        $endgroup$
        – evildemonic
        24 mins ago






      • 1




        $begingroup$
        It's called "MathJax". I've added your formula to your answer to show you how it's done. You can learn more by clicking on the help icon in the editor, select "Advanced Help" and scroll down to the section labeled "LaTeX", which also has a link to MathJax specifically. There's also this post on meta, which provides a link to a number of quick references and other resources.
        $endgroup$
        – Dave Tweed
        19 mins ago







      • 1




        $begingroup$
        So if I wanted a gain of 1000 and a cutoff of 1 Hz, the following values might work? C1=100 uF, R1=1.5k ohm, R2=100k ohm, R3=100 ohm
        $endgroup$
        – Marty
        17 mins ago
















      • $begingroup$
        Thank you for your answer! If you see my edit: will the capacitor block out the fluctuations if they aren't very fast (maybe a quick squeeze/release every 2 seconds)? i.e. a voltage difference when I squeeze a pressure gauge (squeezing vs not squeezing is only a ~1mV signal added to the 0.2V DC)
        $endgroup$
        – Marty
        29 mins ago











      • $begingroup$
        Yes, you will need to choose C1 and R1 based on the slowest change you wish to see. The formula you use to find the cutoff is: F(Hz) = 1 / (2 * pi * R * C)
        $endgroup$
        – evildemonic
        28 mins ago











      • $begingroup$
        Sorry, I am still trying to figure out how to insert the nice looking equations others use here.
        $endgroup$
        – evildemonic
        24 mins ago






      • 1




        $begingroup$
        It's called "MathJax". I've added your formula to your answer to show you how it's done. You can learn more by clicking on the help icon in the editor, select "Advanced Help" and scroll down to the section labeled "LaTeX", which also has a link to MathJax specifically. There's also this post on meta, which provides a link to a number of quick references and other resources.
        $endgroup$
        – Dave Tweed
        19 mins ago







      • 1




        $begingroup$
        So if I wanted a gain of 1000 and a cutoff of 1 Hz, the following values might work? C1=100 uF, R1=1.5k ohm, R2=100k ohm, R3=100 ohm
        $endgroup$
        – Marty
        17 mins ago















      $begingroup$
      Thank you for your answer! If you see my edit: will the capacitor block out the fluctuations if they aren't very fast (maybe a quick squeeze/release every 2 seconds)? i.e. a voltage difference when I squeeze a pressure gauge (squeezing vs not squeezing is only a ~1mV signal added to the 0.2V DC)
      $endgroup$
      – Marty
      29 mins ago





      $begingroup$
      Thank you for your answer! If you see my edit: will the capacitor block out the fluctuations if they aren't very fast (maybe a quick squeeze/release every 2 seconds)? i.e. a voltage difference when I squeeze a pressure gauge (squeezing vs not squeezing is only a ~1mV signal added to the 0.2V DC)
      $endgroup$
      – Marty
      29 mins ago













      $begingroup$
      Yes, you will need to choose C1 and R1 based on the slowest change you wish to see. The formula you use to find the cutoff is: F(Hz) = 1 / (2 * pi * R * C)
      $endgroup$
      – evildemonic
      28 mins ago





      $begingroup$
      Yes, you will need to choose C1 and R1 based on the slowest change you wish to see. The formula you use to find the cutoff is: F(Hz) = 1 / (2 * pi * R * C)
      $endgroup$
      – evildemonic
      28 mins ago













      $begingroup$
      Sorry, I am still trying to figure out how to insert the nice looking equations others use here.
      $endgroup$
      – evildemonic
      24 mins ago




      $begingroup$
      Sorry, I am still trying to figure out how to insert the nice looking equations others use here.
      $endgroup$
      – evildemonic
      24 mins ago




      1




      1




      $begingroup$
      It's called "MathJax". I've added your formula to your answer to show you how it's done. You can learn more by clicking on the help icon in the editor, select "Advanced Help" and scroll down to the section labeled "LaTeX", which also has a link to MathJax specifically. There's also this post on meta, which provides a link to a number of quick references and other resources.
      $endgroup$
      – Dave Tweed
      19 mins ago





      $begingroup$
      It's called "MathJax". I've added your formula to your answer to show you how it's done. You can learn more by clicking on the help icon in the editor, select "Advanced Help" and scroll down to the section labeled "LaTeX", which also has a link to MathJax specifically. There's also this post on meta, which provides a link to a number of quick references and other resources.
      $endgroup$
      – Dave Tweed
      19 mins ago





      1




      1




      $begingroup$
      So if I wanted a gain of 1000 and a cutoff of 1 Hz, the following values might work? C1=100 uF, R1=1.5k ohm, R2=100k ohm, R3=100 ohm
      $endgroup$
      – Marty
      17 mins ago




      $begingroup$
      So if I wanted a gain of 1000 and a cutoff of 1 Hz, the following values might work? C1=100 uF, R1=1.5k ohm, R2=100k ohm, R3=100 ohm
      $endgroup$
      – Marty
      17 mins ago













      1












      $begingroup$

      Use a coupling capacitor prior to the amplifier. The DC signal will be blocked but the fluctuations will pass through.






      share|improve this answer









      $endgroup$

















        1












        $begingroup$

        Use a coupling capacitor prior to the amplifier. The DC signal will be blocked but the fluctuations will pass through.






        share|improve this answer









        $endgroup$















          1












          1








          1





          $begingroup$

          Use a coupling capacitor prior to the amplifier. The DC signal will be blocked but the fluctuations will pass through.






          share|improve this answer









          $endgroup$



          Use a coupling capacitor prior to the amplifier. The DC signal will be blocked but the fluctuations will pass through.







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered 50 mins ago









          Charles HCharles H

          511




          511





















              0












              $begingroup$

              Digital designer here so I'm not certain, but...



              The other answers assume high-frequency fluctuations. Instead you want to subtract the 0.2 V and amplify that. You can use a summing amplifier to subtract the offset, if you've got positive and negative supply voltages. I think you can also use an inverting configuration where the non-inverting input is at 0.2V instead of ground.






              share|improve this answer









              $endgroup$

















                0












                $begingroup$

                Digital designer here so I'm not certain, but...



                The other answers assume high-frequency fluctuations. Instead you want to subtract the 0.2 V and amplify that. You can use a summing amplifier to subtract the offset, if you've got positive and negative supply voltages. I think you can also use an inverting configuration where the non-inverting input is at 0.2V instead of ground.






                share|improve this answer









                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  Digital designer here so I'm not certain, but...



                  The other answers assume high-frequency fluctuations. Instead you want to subtract the 0.2 V and amplify that. You can use a summing amplifier to subtract the offset, if you've got positive and negative supply voltages. I think you can also use an inverting configuration where the non-inverting input is at 0.2V instead of ground.






                  share|improve this answer









                  $endgroup$



                  Digital designer here so I'm not certain, but...



                  The other answers assume high-frequency fluctuations. Instead you want to subtract the 0.2 V and amplify that. You can use a summing amplifier to subtract the offset, if you've got positive and negative supply voltages. I think you can also use an inverting configuration where the non-inverting input is at 0.2V instead of ground.







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered 25 mins ago









                  MattMatt

                  31016




                  31016




















                      Marty is a new contributor. Be nice, and check out our Code of Conduct.









                      draft saved

                      draft discarded


















                      Marty is a new contributor. Be nice, and check out our Code of Conduct.












                      Marty is a new contributor. Be nice, and check out our Code of Conduct.











                      Marty is a new contributor. Be nice, and check out our Code of Conduct.














                      Thanks for contributing an answer to Electrical Engineering Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f433132%2fcircuit-to-zoom-in-on-mv-fluctuations-of-a-dc-signal%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Are there any AGPL-style licences that require source code modifications to be public? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Force derivative works to be publicAre there any GPL like licenses for Apple App Store?Do you violate the GPL if you provide source code that cannot be compiled?GPL - is it distribution to use libraries in an appliance loaned to customers?Distributing App for free which uses GPL'ed codeModifications of server software under GPL, with web/CLI interfaceDoes using an AGPLv3-licensed library prevent me from dual-licensing my own source code?Can I publish only select code under GPLv3 from a private project?Is there published precedent regarding the scope of covered work that uses AGPL software?If MIT licensed code links to GPL licensed code what should be the license of the resulting binary program?If I use a public API endpoint that has its source code licensed under AGPL in my app, do I need to disclose my source?

                      2013 GY136 Descoberta | Órbita | Referências Menu de navegação«List Of Centaurs and Scattered-Disk Objects»«List of Known Trans-Neptunian Objects»

                      Button changing it's text & action. Good or terrible? The 2019 Stack Overflow Developer Survey Results Are Inchanging text on user mouseoverShould certain functions be “hard to find” for powerusers to discover?Custom liking function - do I need user login?Using different checkbox style for different checkbox behaviorBest Practices: Save and Exit in Software UIInteraction with remote validated formMore efficient UI to progress the user through a complicated process?Designing a popup notice for a gameShould bulk-editing functions be hidden until a table row is selected, or is there a better solution?Is it bad practice to disable (replace) the context menu?