Still taught to reverse oxidation half cells in electrochemistry? The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Oxidation of metals/halogens by oxygen gas in acidic aqueous solutionDeriving a reduction potential from two other reduction potentialsIf given a half reaction, how do you determine if an element can exist in a acidic conditions?Electrolysis of dilute and concentrated sodium chloride and the Nernst equationRedox - concentration cellHow to calculate the electrochemical potential of a cell using known half-cell potentials?What is the purpose of the electrolyte in the half-cell where oxidation is taking place?Calculating the standard reduction potential for the oxidation of waterNo sign flipping while figuring out the emf of voltaic cell?What are the products in the reaction of sulphuric acid and Group 2 metals?Oxidation of metals/halogens by oxygen gas in acidic aqueous solution

What was the last x86 CPU that did not have the x87 floating-point unit built in?

When did F become S? Why?

Typeface like Times New Roman but with "tied" percent sign

Was credit for the black hole image misattributed?

RT6224D-based step down circuit yields 0V - why?

Make it rain characters

Does the AirPods case need to be around while listening via an iOS Device?

Simulating Exploding Dice

Why don't hard Brexiteers insist on a hard border to prevent illegal immigration after Brexit?

Mortgage adviser recommends a longer term than necessary combined with overpayments

Converting from Markdown-with-biblatex-commands to LaTeX

Is every episode of "Where are my Pants?" identical?

How did the audience guess the pentatonic scale in Bobby McFerrin's presentation?

Road tyres vs "Street" tyres for charity ride on MTB Tandem

Scientific Reports - Significant Figures

Is it ok to offer lower paid work as a trial period before negotiating for a full-time job?

How to politely respond to generic emails requesting a PhD/job in my lab? Without wasting too much time

Why can't devices on different VLANs, but on the same subnet, communicate?

Is it ethical to upload a automatically generated paper to a non peer-reviewed site as part of a larger research?

Change bounding box of math glyphs in LuaTeX

How to copy the contents of all files with a certain name into a new file?

Python - Fishing Simulator

Match Roman Numerals

Why does the Event Horizon Telescope (EHT) not include telescopes from Africa, Asia or Australia?



Still taught to reverse oxidation half cells in electrochemistry?



The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Oxidation of metals/halogens by oxygen gas in acidic aqueous solutionDeriving a reduction potential from two other reduction potentialsIf given a half reaction, how do you determine if an element can exist in a acidic conditions?Electrolysis of dilute and concentrated sodium chloride and the Nernst equationRedox - concentration cellHow to calculate the electrochemical potential of a cell using known half-cell potentials?What is the purpose of the electrolyte in the half-cell where oxidation is taking place?Calculating the standard reduction potential for the oxidation of waterNo sign flipping while figuring out the emf of voltaic cell?What are the products in the reaction of sulphuric acid and Group 2 metals?Oxidation of metals/halogens by oxygen gas in acidic aqueous solution










2












$begingroup$


In a question, Oxidation of metals/halogens by oxygen gas in acidic aqueous solution, there was a point made that reduction half-cells should not be reversed.



I was taught ($approx 1970$) in the following manner. Given the reduction half cells:




$$
beginalign
ceO2(g) + 4 H+(aq) + 4 e- &→ 2 H2O(l) &quad E^circ &= pu+1.23 V \
ceAg+ + e- &→ Ag(s) &quad E^circ &= pu+0.799 V \
ceBr2(l) + 2 e- &→ 2 Br-(aq) &quad E^circ &= pu+1.065 V
endalign
$$




To get the the standard oxidation potentials you reverse the products and reactants and you must also flip the sign of the reaction. So:




$$
beginalign
ceAg(s) &→ Ag+ + e- &quad E^circ &= pu-0.799 V \
ce2 Br-(aq) &→ Br2(l) + 2 e- &quad E^circ &= pu-1.065 V
endalign
$$




Now you can write a balanced chemical reaction as such:




$$
beginalign
ceO2(g) + 4 H+(aq) + 4 e- &→ 2 H2O(l) &quad E^circ &= pu+1.23 V \
ce4Ag(s) &→ 4Ag+ + 4e- &quad E^circ &= pu-0.799 V \
ceO2(g) + 4 H+(aq) + 4 Ag(s)&→ 4Ag+ + 2 H2O(l) &quad E_textTotal^circ &= pu+1.23 - 0.799 = +0.43 V
endalign
$$




and to get the cell potential the two half cells are added, one being positive and the other negative. If the EMF is positive the forward reaction is spontaneous, if negative the reverse reaction is spontaneous.



Is flipping the reduction reaction not the standard method taught these days to balance redox reactions?










share|improve this question











$endgroup$











  • $begingroup$
    It looks like silver-silver cell would be even better than silver zinc cell, with the added value of perpetuum mobile. :-)
    $endgroup$
    – Poutnik
    4 hours ago










  • $begingroup$
    For the standard silver cell vs a standard silver cell the EMF would be 0 and thus no current flow. Because of the Nernst equation the potential of a non-standard silver cell would vary if the $ceA_Ag+ ne 1.000 $.
    $endgroup$
    – MaxW
    4 hours ago











  • $begingroup$
    I know it well. But it does not make sense to write the silver electrode potential like if silver had been better reduction agent than zinc.
    $endgroup$
    – Poutnik
    4 hours ago










  • $begingroup$
    @Poutnik - Huh? I wrote the Ag reaction with an EMF as -0.799V as an oxidation not a reduction so that I could balance the equation.
    $endgroup$
    – MaxW
    3 hours ago










  • $begingroup$
    The point is, electrode potential is for 2-way redox reaction equilibrium, holding this potential with respect to the standard hydrogen electrode. For $ceAg/Ag+$, it is positive, not negative. With the open voltage, the oxidation and reduction is ongoing with the same rate.
    $endgroup$
    – Poutnik
    3 hours ago
















2












$begingroup$


In a question, Oxidation of metals/halogens by oxygen gas in acidic aqueous solution, there was a point made that reduction half-cells should not be reversed.



I was taught ($approx 1970$) in the following manner. Given the reduction half cells:




$$
beginalign
ceO2(g) + 4 H+(aq) + 4 e- &→ 2 H2O(l) &quad E^circ &= pu+1.23 V \
ceAg+ + e- &→ Ag(s) &quad E^circ &= pu+0.799 V \
ceBr2(l) + 2 e- &→ 2 Br-(aq) &quad E^circ &= pu+1.065 V
endalign
$$




To get the the standard oxidation potentials you reverse the products and reactants and you must also flip the sign of the reaction. So:




$$
beginalign
ceAg(s) &→ Ag+ + e- &quad E^circ &= pu-0.799 V \
ce2 Br-(aq) &→ Br2(l) + 2 e- &quad E^circ &= pu-1.065 V
endalign
$$




Now you can write a balanced chemical reaction as such:




$$
beginalign
ceO2(g) + 4 H+(aq) + 4 e- &→ 2 H2O(l) &quad E^circ &= pu+1.23 V \
ce4Ag(s) &→ 4Ag+ + 4e- &quad E^circ &= pu-0.799 V \
ceO2(g) + 4 H+(aq) + 4 Ag(s)&→ 4Ag+ + 2 H2O(l) &quad E_textTotal^circ &= pu+1.23 - 0.799 = +0.43 V
endalign
$$




and to get the cell potential the two half cells are added, one being positive and the other negative. If the EMF is positive the forward reaction is spontaneous, if negative the reverse reaction is spontaneous.



Is flipping the reduction reaction not the standard method taught these days to balance redox reactions?










share|improve this question











$endgroup$











  • $begingroup$
    It looks like silver-silver cell would be even better than silver zinc cell, with the added value of perpetuum mobile. :-)
    $endgroup$
    – Poutnik
    4 hours ago










  • $begingroup$
    For the standard silver cell vs a standard silver cell the EMF would be 0 and thus no current flow. Because of the Nernst equation the potential of a non-standard silver cell would vary if the $ceA_Ag+ ne 1.000 $.
    $endgroup$
    – MaxW
    4 hours ago











  • $begingroup$
    I know it well. But it does not make sense to write the silver electrode potential like if silver had been better reduction agent than zinc.
    $endgroup$
    – Poutnik
    4 hours ago










  • $begingroup$
    @Poutnik - Huh? I wrote the Ag reaction with an EMF as -0.799V as an oxidation not a reduction so that I could balance the equation.
    $endgroup$
    – MaxW
    3 hours ago










  • $begingroup$
    The point is, electrode potential is for 2-way redox reaction equilibrium, holding this potential with respect to the standard hydrogen electrode. For $ceAg/Ag+$, it is positive, not negative. With the open voltage, the oxidation and reduction is ongoing with the same rate.
    $endgroup$
    – Poutnik
    3 hours ago














2












2








2





$begingroup$


In a question, Oxidation of metals/halogens by oxygen gas in acidic aqueous solution, there was a point made that reduction half-cells should not be reversed.



I was taught ($approx 1970$) in the following manner. Given the reduction half cells:




$$
beginalign
ceO2(g) + 4 H+(aq) + 4 e- &→ 2 H2O(l) &quad E^circ &= pu+1.23 V \
ceAg+ + e- &→ Ag(s) &quad E^circ &= pu+0.799 V \
ceBr2(l) + 2 e- &→ 2 Br-(aq) &quad E^circ &= pu+1.065 V
endalign
$$




To get the the standard oxidation potentials you reverse the products and reactants and you must also flip the sign of the reaction. So:




$$
beginalign
ceAg(s) &→ Ag+ + e- &quad E^circ &= pu-0.799 V \
ce2 Br-(aq) &→ Br2(l) + 2 e- &quad E^circ &= pu-1.065 V
endalign
$$




Now you can write a balanced chemical reaction as such:




$$
beginalign
ceO2(g) + 4 H+(aq) + 4 e- &→ 2 H2O(l) &quad E^circ &= pu+1.23 V \
ce4Ag(s) &→ 4Ag+ + 4e- &quad E^circ &= pu-0.799 V \
ceO2(g) + 4 H+(aq) + 4 Ag(s)&→ 4Ag+ + 2 H2O(l) &quad E_textTotal^circ &= pu+1.23 - 0.799 = +0.43 V
endalign
$$




and to get the cell potential the two half cells are added, one being positive and the other negative. If the EMF is positive the forward reaction is spontaneous, if negative the reverse reaction is spontaneous.



Is flipping the reduction reaction not the standard method taught these days to balance redox reactions?










share|improve this question











$endgroup$




In a question, Oxidation of metals/halogens by oxygen gas in acidic aqueous solution, there was a point made that reduction half-cells should not be reversed.



I was taught ($approx 1970$) in the following manner. Given the reduction half cells:




$$
beginalign
ceO2(g) + 4 H+(aq) + 4 e- &→ 2 H2O(l) &quad E^circ &= pu+1.23 V \
ceAg+ + e- &→ Ag(s) &quad E^circ &= pu+0.799 V \
ceBr2(l) + 2 e- &→ 2 Br-(aq) &quad E^circ &= pu+1.065 V
endalign
$$




To get the the standard oxidation potentials you reverse the products and reactants and you must also flip the sign of the reaction. So:




$$
beginalign
ceAg(s) &→ Ag+ + e- &quad E^circ &= pu-0.799 V \
ce2 Br-(aq) &→ Br2(l) + 2 e- &quad E^circ &= pu-1.065 V
endalign
$$




Now you can write a balanced chemical reaction as such:




$$
beginalign
ceO2(g) + 4 H+(aq) + 4 e- &→ 2 H2O(l) &quad E^circ &= pu+1.23 V \
ce4Ag(s) &→ 4Ag+ + 4e- &quad E^circ &= pu-0.799 V \
ceO2(g) + 4 H+(aq) + 4 Ag(s)&→ 4Ag+ + 2 H2O(l) &quad E_textTotal^circ &= pu+1.23 - 0.799 = +0.43 V
endalign
$$




and to get the cell potential the two half cells are added, one being positive and the other negative. If the EMF is positive the forward reaction is spontaneous, if negative the reverse reaction is spontaneous.



Is flipping the reduction reaction not the standard method taught these days to balance redox reactions?







electrochemistry






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 4 hours ago







MaxW

















asked 5 hours ago









MaxWMaxW

15.6k22261




15.6k22261











  • $begingroup$
    It looks like silver-silver cell would be even better than silver zinc cell, with the added value of perpetuum mobile. :-)
    $endgroup$
    – Poutnik
    4 hours ago










  • $begingroup$
    For the standard silver cell vs a standard silver cell the EMF would be 0 and thus no current flow. Because of the Nernst equation the potential of a non-standard silver cell would vary if the $ceA_Ag+ ne 1.000 $.
    $endgroup$
    – MaxW
    4 hours ago











  • $begingroup$
    I know it well. But it does not make sense to write the silver electrode potential like if silver had been better reduction agent than zinc.
    $endgroup$
    – Poutnik
    4 hours ago










  • $begingroup$
    @Poutnik - Huh? I wrote the Ag reaction with an EMF as -0.799V as an oxidation not a reduction so that I could balance the equation.
    $endgroup$
    – MaxW
    3 hours ago










  • $begingroup$
    The point is, electrode potential is for 2-way redox reaction equilibrium, holding this potential with respect to the standard hydrogen electrode. For $ceAg/Ag+$, it is positive, not negative. With the open voltage, the oxidation and reduction is ongoing with the same rate.
    $endgroup$
    – Poutnik
    3 hours ago

















  • $begingroup$
    It looks like silver-silver cell would be even better than silver zinc cell, with the added value of perpetuum mobile. :-)
    $endgroup$
    – Poutnik
    4 hours ago










  • $begingroup$
    For the standard silver cell vs a standard silver cell the EMF would be 0 and thus no current flow. Because of the Nernst equation the potential of a non-standard silver cell would vary if the $ceA_Ag+ ne 1.000 $.
    $endgroup$
    – MaxW
    4 hours ago











  • $begingroup$
    I know it well. But it does not make sense to write the silver electrode potential like if silver had been better reduction agent than zinc.
    $endgroup$
    – Poutnik
    4 hours ago










  • $begingroup$
    @Poutnik - Huh? I wrote the Ag reaction with an EMF as -0.799V as an oxidation not a reduction so that I could balance the equation.
    $endgroup$
    – MaxW
    3 hours ago










  • $begingroup$
    The point is, electrode potential is for 2-way redox reaction equilibrium, holding this potential with respect to the standard hydrogen electrode. For $ceAg/Ag+$, it is positive, not negative. With the open voltage, the oxidation and reduction is ongoing with the same rate.
    $endgroup$
    – Poutnik
    3 hours ago
















$begingroup$
It looks like silver-silver cell would be even better than silver zinc cell, with the added value of perpetuum mobile. :-)
$endgroup$
– Poutnik
4 hours ago




$begingroup$
It looks like silver-silver cell would be even better than silver zinc cell, with the added value of perpetuum mobile. :-)
$endgroup$
– Poutnik
4 hours ago












$begingroup$
For the standard silver cell vs a standard silver cell the EMF would be 0 and thus no current flow. Because of the Nernst equation the potential of a non-standard silver cell would vary if the $ceA_Ag+ ne 1.000 $.
$endgroup$
– MaxW
4 hours ago





$begingroup$
For the standard silver cell vs a standard silver cell the EMF would be 0 and thus no current flow. Because of the Nernst equation the potential of a non-standard silver cell would vary if the $ceA_Ag+ ne 1.000 $.
$endgroup$
– MaxW
4 hours ago













$begingroup$
I know it well. But it does not make sense to write the silver electrode potential like if silver had been better reduction agent than zinc.
$endgroup$
– Poutnik
4 hours ago




$begingroup$
I know it well. But it does not make sense to write the silver electrode potential like if silver had been better reduction agent than zinc.
$endgroup$
– Poutnik
4 hours ago












$begingroup$
@Poutnik - Huh? I wrote the Ag reaction with an EMF as -0.799V as an oxidation not a reduction so that I could balance the equation.
$endgroup$
– MaxW
3 hours ago




$begingroup$
@Poutnik - Huh? I wrote the Ag reaction with an EMF as -0.799V as an oxidation not a reduction so that I could balance the equation.
$endgroup$
– MaxW
3 hours ago












$begingroup$
The point is, electrode potential is for 2-way redox reaction equilibrium, holding this potential with respect to the standard hydrogen electrode. For $ceAg/Ag+$, it is positive, not negative. With the open voltage, the oxidation and reduction is ongoing with the same rate.
$endgroup$
– Poutnik
3 hours ago





$begingroup$
The point is, electrode potential is for 2-way redox reaction equilibrium, holding this potential with respect to the standard hydrogen electrode. For $ceAg/Ag+$, it is positive, not negative. With the open voltage, the oxidation and reduction is ongoing with the same rate.
$endgroup$
– Poutnik
3 hours ago











2 Answers
2






active

oldest

votes


















1












$begingroup$

I have a done significant amount of research over the past ten years to trace to origins of these electrochemical conventions and luckily got a chance to discuss these with some top electrochemists. I have been planning to write an article on this issue since it is a perpetual confusion. Basically, the origin of these "signs" issues originated in Germany and USA. The Ostwald school of thought, wrote the electrode potentials in accordance with the electrostatic sign of the electrode with reference to the standard hydrogen electrode. This was the so-called European convention. Keep in mind that electrostatic signs of the electrodes are invariant. It does not matter how you write them. A silver electrode in Ag+/Ag half-cell is always positively charged with respect to the hydrogen electrode under standard conditions.



The American school of thought, with its own influence such as Gibbs, Lewis and Randall, Ligane, Latimer, had a thermodynamic view of the signs relating electrode potentials to the Gibbs free energy. Latimer wrote a very famous book "Oxidation Potentials" which is available from Internet archives. Yes, under those conditions we can flip the signs back and forth while keeping Gibbs free energy in mind. The tug of war between European convention vs. American convention went on until the 50s-70s. Textbooks are usually 20 years behind current research...these issues lingered on.



Finally, electrochemists decided, including Allan J. Bard (from US who wrote a very influential electrochemistry book taught all over the world), that let us go back to the original notion- keep the electrostatic signs associated with the electrode potentials which are invariant with respect to the way we write them. This has "almost" terminated the sign convention issue of US vs. European signs of electrode potentials. The plus and minuses took almost a century to resolve. It is amazing to see the insight of those early scientists such as Ostwald, that world finally accepted their views.






share|improve this answer











$endgroup$












  • $begingroup$
    So how do you balance the chemical equation if you don't reverse the silver half cell? The whole point in flipping the silver reaction was to get electrons on both sides of the chemical reaction so that the electrons are the same on both sides.
    $endgroup$
    – MaxW
    4 hours ago










  • $begingroup$
    Certainly we need to write the silver half equation as Ag -> Ag+ e, but I would not write electrode potentials next to them and flip signs. This confuses students because in Ecell= Ecathode-Eanode, they may wonder whether they should change Eanode sign or not. The negative sign already accounts for the oxidation.
    $endgroup$
    – M. Farooq
    3 hours ago


















0












$begingroup$

I still teach switching the sign. I find it easier to remember adding up reduction potential and oxidation potential. The half reactions are written as reduction in a table of reduction potentials, so it makes sense that you have to treat the oxidation half reaction differently.



If the cell potential is calculated from reduction potential of the cathode half reaction minus that of the anode half reaction, there are more points of possible errors, including trouble with arithmetic.



You might argue that students learn more and gain deeper insight when given more opportunity to make mistakes, so maybe my approach is inferior. For example, students can use the approach I am using without knowing which electrode is the anode and which is the cathode.






share|improve this answer









$endgroup$












  • $begingroup$
    Just curious - Does the text book you use also employ that technique for balancing redox reactions?
    $endgroup$
    – MaxW
    3 hours ago






  • 1




    $begingroup$
    I use multiple textbooks, and my students might use other sources entirely. Of the textbooks I use, D. M. Hanson's Foundations of Chemistry uses $E_textred + E_textox$ while OpenStax Chemistry uses $E_textcathode - E_textanode$.
    $endgroup$
    – Karsten Theis
    3 hours ago











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "431"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f112680%2fstill-taught-to-reverse-oxidation-half-cells-in-electrochemistry%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

I have a done significant amount of research over the past ten years to trace to origins of these electrochemical conventions and luckily got a chance to discuss these with some top electrochemists. I have been planning to write an article on this issue since it is a perpetual confusion. Basically, the origin of these "signs" issues originated in Germany and USA. The Ostwald school of thought, wrote the electrode potentials in accordance with the electrostatic sign of the electrode with reference to the standard hydrogen electrode. This was the so-called European convention. Keep in mind that electrostatic signs of the electrodes are invariant. It does not matter how you write them. A silver electrode in Ag+/Ag half-cell is always positively charged with respect to the hydrogen electrode under standard conditions.



The American school of thought, with its own influence such as Gibbs, Lewis and Randall, Ligane, Latimer, had a thermodynamic view of the signs relating electrode potentials to the Gibbs free energy. Latimer wrote a very famous book "Oxidation Potentials" which is available from Internet archives. Yes, under those conditions we can flip the signs back and forth while keeping Gibbs free energy in mind. The tug of war between European convention vs. American convention went on until the 50s-70s. Textbooks are usually 20 years behind current research...these issues lingered on.



Finally, electrochemists decided, including Allan J. Bard (from US who wrote a very influential electrochemistry book taught all over the world), that let us go back to the original notion- keep the electrostatic signs associated with the electrode potentials which are invariant with respect to the way we write them. This has "almost" terminated the sign convention issue of US vs. European signs of electrode potentials. The plus and minuses took almost a century to resolve. It is amazing to see the insight of those early scientists such as Ostwald, that world finally accepted their views.






share|improve this answer











$endgroup$












  • $begingroup$
    So how do you balance the chemical equation if you don't reverse the silver half cell? The whole point in flipping the silver reaction was to get electrons on both sides of the chemical reaction so that the electrons are the same on both sides.
    $endgroup$
    – MaxW
    4 hours ago










  • $begingroup$
    Certainly we need to write the silver half equation as Ag -> Ag+ e, but I would not write electrode potentials next to them and flip signs. This confuses students because in Ecell= Ecathode-Eanode, they may wonder whether they should change Eanode sign or not. The negative sign already accounts for the oxidation.
    $endgroup$
    – M. Farooq
    3 hours ago















1












$begingroup$

I have a done significant amount of research over the past ten years to trace to origins of these electrochemical conventions and luckily got a chance to discuss these with some top electrochemists. I have been planning to write an article on this issue since it is a perpetual confusion. Basically, the origin of these "signs" issues originated in Germany and USA. The Ostwald school of thought, wrote the electrode potentials in accordance with the electrostatic sign of the electrode with reference to the standard hydrogen electrode. This was the so-called European convention. Keep in mind that electrostatic signs of the electrodes are invariant. It does not matter how you write them. A silver electrode in Ag+/Ag half-cell is always positively charged with respect to the hydrogen electrode under standard conditions.



The American school of thought, with its own influence such as Gibbs, Lewis and Randall, Ligane, Latimer, had a thermodynamic view of the signs relating electrode potentials to the Gibbs free energy. Latimer wrote a very famous book "Oxidation Potentials" which is available from Internet archives. Yes, under those conditions we can flip the signs back and forth while keeping Gibbs free energy in mind. The tug of war between European convention vs. American convention went on until the 50s-70s. Textbooks are usually 20 years behind current research...these issues lingered on.



Finally, electrochemists decided, including Allan J. Bard (from US who wrote a very influential electrochemistry book taught all over the world), that let us go back to the original notion- keep the electrostatic signs associated with the electrode potentials which are invariant with respect to the way we write them. This has "almost" terminated the sign convention issue of US vs. European signs of electrode potentials. The plus and minuses took almost a century to resolve. It is amazing to see the insight of those early scientists such as Ostwald, that world finally accepted their views.






share|improve this answer











$endgroup$












  • $begingroup$
    So how do you balance the chemical equation if you don't reverse the silver half cell? The whole point in flipping the silver reaction was to get electrons on both sides of the chemical reaction so that the electrons are the same on both sides.
    $endgroup$
    – MaxW
    4 hours ago










  • $begingroup$
    Certainly we need to write the silver half equation as Ag -> Ag+ e, but I would not write electrode potentials next to them and flip signs. This confuses students because in Ecell= Ecathode-Eanode, they may wonder whether they should change Eanode sign or not. The negative sign already accounts for the oxidation.
    $endgroup$
    – M. Farooq
    3 hours ago













1












1








1





$begingroup$

I have a done significant amount of research over the past ten years to trace to origins of these electrochemical conventions and luckily got a chance to discuss these with some top electrochemists. I have been planning to write an article on this issue since it is a perpetual confusion. Basically, the origin of these "signs" issues originated in Germany and USA. The Ostwald school of thought, wrote the electrode potentials in accordance with the electrostatic sign of the electrode with reference to the standard hydrogen electrode. This was the so-called European convention. Keep in mind that electrostatic signs of the electrodes are invariant. It does not matter how you write them. A silver electrode in Ag+/Ag half-cell is always positively charged with respect to the hydrogen electrode under standard conditions.



The American school of thought, with its own influence such as Gibbs, Lewis and Randall, Ligane, Latimer, had a thermodynamic view of the signs relating electrode potentials to the Gibbs free energy. Latimer wrote a very famous book "Oxidation Potentials" which is available from Internet archives. Yes, under those conditions we can flip the signs back and forth while keeping Gibbs free energy in mind. The tug of war between European convention vs. American convention went on until the 50s-70s. Textbooks are usually 20 years behind current research...these issues lingered on.



Finally, electrochemists decided, including Allan J. Bard (from US who wrote a very influential electrochemistry book taught all over the world), that let us go back to the original notion- keep the electrostatic signs associated with the electrode potentials which are invariant with respect to the way we write them. This has "almost" terminated the sign convention issue of US vs. European signs of electrode potentials. The plus and minuses took almost a century to resolve. It is amazing to see the insight of those early scientists such as Ostwald, that world finally accepted their views.






share|improve this answer











$endgroup$



I have a done significant amount of research over the past ten years to trace to origins of these electrochemical conventions and luckily got a chance to discuss these with some top electrochemists. I have been planning to write an article on this issue since it is a perpetual confusion. Basically, the origin of these "signs" issues originated in Germany and USA. The Ostwald school of thought, wrote the electrode potentials in accordance with the electrostatic sign of the electrode with reference to the standard hydrogen electrode. This was the so-called European convention. Keep in mind that electrostatic signs of the electrodes are invariant. It does not matter how you write them. A silver electrode in Ag+/Ag half-cell is always positively charged with respect to the hydrogen electrode under standard conditions.



The American school of thought, with its own influence such as Gibbs, Lewis and Randall, Ligane, Latimer, had a thermodynamic view of the signs relating electrode potentials to the Gibbs free energy. Latimer wrote a very famous book "Oxidation Potentials" which is available from Internet archives. Yes, under those conditions we can flip the signs back and forth while keeping Gibbs free energy in mind. The tug of war between European convention vs. American convention went on until the 50s-70s. Textbooks are usually 20 years behind current research...these issues lingered on.



Finally, electrochemists decided, including Allan J. Bard (from US who wrote a very influential electrochemistry book taught all over the world), that let us go back to the original notion- keep the electrostatic signs associated with the electrode potentials which are invariant with respect to the way we write them. This has "almost" terminated the sign convention issue of US vs. European signs of electrode potentials. The plus and minuses took almost a century to resolve. It is amazing to see the insight of those early scientists such as Ostwald, that world finally accepted their views.







share|improve this answer














share|improve this answer



share|improve this answer








edited 4 hours ago

























answered 4 hours ago









M. FarooqM. Farooq

1,601111




1,601111











  • $begingroup$
    So how do you balance the chemical equation if you don't reverse the silver half cell? The whole point in flipping the silver reaction was to get electrons on both sides of the chemical reaction so that the electrons are the same on both sides.
    $endgroup$
    – MaxW
    4 hours ago










  • $begingroup$
    Certainly we need to write the silver half equation as Ag -> Ag+ e, but I would not write electrode potentials next to them and flip signs. This confuses students because in Ecell= Ecathode-Eanode, they may wonder whether they should change Eanode sign or not. The negative sign already accounts for the oxidation.
    $endgroup$
    – M. Farooq
    3 hours ago
















  • $begingroup$
    So how do you balance the chemical equation if you don't reverse the silver half cell? The whole point in flipping the silver reaction was to get electrons on both sides of the chemical reaction so that the electrons are the same on both sides.
    $endgroup$
    – MaxW
    4 hours ago










  • $begingroup$
    Certainly we need to write the silver half equation as Ag -> Ag+ e, but I would not write electrode potentials next to them and flip signs. This confuses students because in Ecell= Ecathode-Eanode, they may wonder whether they should change Eanode sign or not. The negative sign already accounts for the oxidation.
    $endgroup$
    – M. Farooq
    3 hours ago















$begingroup$
So how do you balance the chemical equation if you don't reverse the silver half cell? The whole point in flipping the silver reaction was to get electrons on both sides of the chemical reaction so that the electrons are the same on both sides.
$endgroup$
– MaxW
4 hours ago




$begingroup$
So how do you balance the chemical equation if you don't reverse the silver half cell? The whole point in flipping the silver reaction was to get electrons on both sides of the chemical reaction so that the electrons are the same on both sides.
$endgroup$
– MaxW
4 hours ago












$begingroup$
Certainly we need to write the silver half equation as Ag -> Ag+ e, but I would not write electrode potentials next to them and flip signs. This confuses students because in Ecell= Ecathode-Eanode, they may wonder whether they should change Eanode sign or not. The negative sign already accounts for the oxidation.
$endgroup$
– M. Farooq
3 hours ago




$begingroup$
Certainly we need to write the silver half equation as Ag -> Ag+ e, but I would not write electrode potentials next to them and flip signs. This confuses students because in Ecell= Ecathode-Eanode, they may wonder whether they should change Eanode sign or not. The negative sign already accounts for the oxidation.
$endgroup$
– M. Farooq
3 hours ago











0












$begingroup$

I still teach switching the sign. I find it easier to remember adding up reduction potential and oxidation potential. The half reactions are written as reduction in a table of reduction potentials, so it makes sense that you have to treat the oxidation half reaction differently.



If the cell potential is calculated from reduction potential of the cathode half reaction minus that of the anode half reaction, there are more points of possible errors, including trouble with arithmetic.



You might argue that students learn more and gain deeper insight when given more opportunity to make mistakes, so maybe my approach is inferior. For example, students can use the approach I am using without knowing which electrode is the anode and which is the cathode.






share|improve this answer









$endgroup$












  • $begingroup$
    Just curious - Does the text book you use also employ that technique for balancing redox reactions?
    $endgroup$
    – MaxW
    3 hours ago






  • 1




    $begingroup$
    I use multiple textbooks, and my students might use other sources entirely. Of the textbooks I use, D. M. Hanson's Foundations of Chemistry uses $E_textred + E_textox$ while OpenStax Chemistry uses $E_textcathode - E_textanode$.
    $endgroup$
    – Karsten Theis
    3 hours ago















0












$begingroup$

I still teach switching the sign. I find it easier to remember adding up reduction potential and oxidation potential. The half reactions are written as reduction in a table of reduction potentials, so it makes sense that you have to treat the oxidation half reaction differently.



If the cell potential is calculated from reduction potential of the cathode half reaction minus that of the anode half reaction, there are more points of possible errors, including trouble with arithmetic.



You might argue that students learn more and gain deeper insight when given more opportunity to make mistakes, so maybe my approach is inferior. For example, students can use the approach I am using without knowing which electrode is the anode and which is the cathode.






share|improve this answer









$endgroup$












  • $begingroup$
    Just curious - Does the text book you use also employ that technique for balancing redox reactions?
    $endgroup$
    – MaxW
    3 hours ago






  • 1




    $begingroup$
    I use multiple textbooks, and my students might use other sources entirely. Of the textbooks I use, D. M. Hanson's Foundations of Chemistry uses $E_textred + E_textox$ while OpenStax Chemistry uses $E_textcathode - E_textanode$.
    $endgroup$
    – Karsten Theis
    3 hours ago













0












0








0





$begingroup$

I still teach switching the sign. I find it easier to remember adding up reduction potential and oxidation potential. The half reactions are written as reduction in a table of reduction potentials, so it makes sense that you have to treat the oxidation half reaction differently.



If the cell potential is calculated from reduction potential of the cathode half reaction minus that of the anode half reaction, there are more points of possible errors, including trouble with arithmetic.



You might argue that students learn more and gain deeper insight when given more opportunity to make mistakes, so maybe my approach is inferior. For example, students can use the approach I am using without knowing which electrode is the anode and which is the cathode.






share|improve this answer









$endgroup$



I still teach switching the sign. I find it easier to remember adding up reduction potential and oxidation potential. The half reactions are written as reduction in a table of reduction potentials, so it makes sense that you have to treat the oxidation half reaction differently.



If the cell potential is calculated from reduction potential of the cathode half reaction minus that of the anode half reaction, there are more points of possible errors, including trouble with arithmetic.



You might argue that students learn more and gain deeper insight when given more opportunity to make mistakes, so maybe my approach is inferior. For example, students can use the approach I am using without knowing which electrode is the anode and which is the cathode.







share|improve this answer












share|improve this answer



share|improve this answer










answered 4 hours ago









Karsten TheisKarsten Theis

4,334542




4,334542











  • $begingroup$
    Just curious - Does the text book you use also employ that technique for balancing redox reactions?
    $endgroup$
    – MaxW
    3 hours ago






  • 1




    $begingroup$
    I use multiple textbooks, and my students might use other sources entirely. Of the textbooks I use, D. M. Hanson's Foundations of Chemistry uses $E_textred + E_textox$ while OpenStax Chemistry uses $E_textcathode - E_textanode$.
    $endgroup$
    – Karsten Theis
    3 hours ago
















  • $begingroup$
    Just curious - Does the text book you use also employ that technique for balancing redox reactions?
    $endgroup$
    – MaxW
    3 hours ago






  • 1




    $begingroup$
    I use multiple textbooks, and my students might use other sources entirely. Of the textbooks I use, D. M. Hanson's Foundations of Chemistry uses $E_textred + E_textox$ while OpenStax Chemistry uses $E_textcathode - E_textanode$.
    $endgroup$
    – Karsten Theis
    3 hours ago















$begingroup$
Just curious - Does the text book you use also employ that technique for balancing redox reactions?
$endgroup$
– MaxW
3 hours ago




$begingroup$
Just curious - Does the text book you use also employ that technique for balancing redox reactions?
$endgroup$
– MaxW
3 hours ago




1




1




$begingroup$
I use multiple textbooks, and my students might use other sources entirely. Of the textbooks I use, D. M. Hanson's Foundations of Chemistry uses $E_textred + E_textox$ while OpenStax Chemistry uses $E_textcathode - E_textanode$.
$endgroup$
– Karsten Theis
3 hours ago




$begingroup$
I use multiple textbooks, and my students might use other sources entirely. Of the textbooks I use, D. M. Hanson's Foundations of Chemistry uses $E_textred + E_textox$ while OpenStax Chemistry uses $E_textcathode - E_textanode$.
$endgroup$
– Karsten Theis
3 hours ago

















draft saved

draft discarded
















































Thanks for contributing an answer to Chemistry Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f112680%2fstill-taught-to-reverse-oxidation-half-cells-in-electrochemistry%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Are there any AGPL-style licences that require source code modifications to be public? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Force derivative works to be publicAre there any GPL like licenses for Apple App Store?Do you violate the GPL if you provide source code that cannot be compiled?GPL - is it distribution to use libraries in an appliance loaned to customers?Distributing App for free which uses GPL'ed codeModifications of server software under GPL, with web/CLI interfaceDoes using an AGPLv3-licensed library prevent me from dual-licensing my own source code?Can I publish only select code under GPLv3 from a private project?Is there published precedent regarding the scope of covered work that uses AGPL software?If MIT licensed code links to GPL licensed code what should be the license of the resulting binary program?If I use a public API endpoint that has its source code licensed under AGPL in my app, do I need to disclose my source?

2013 GY136 Descoberta | Órbita | Referências Menu de navegação«List Of Centaurs and Scattered-Disk Objects»«List of Known Trans-Neptunian Objects»

Button changing it's text & action. Good or terrible? The 2019 Stack Overflow Developer Survey Results Are Inchanging text on user mouseoverShould certain functions be “hard to find” for powerusers to discover?Custom liking function - do I need user login?Using different checkbox style for different checkbox behaviorBest Practices: Save and Exit in Software UIInteraction with remote validated formMore efficient UI to progress the user through a complicated process?Designing a popup notice for a gameShould bulk-editing functions be hidden until a table row is selected, or is there a better solution?Is it bad practice to disable (replace) the context menu?