What is special about square numbers here? The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)The final state of 1000 light bulbs switched on/off by 1000 people passing byWord Problem Proof? (just for fun, help)Enigma : of Wizards, Dwarves and HatsCoin Arrangement Puzzlecreating a more complex sudoku (69x6)Determining the favored penny on a chessboardHow many different ways can I add three numbers to get a certain sum?Board game - winning strategyDifference PuzzlesCould someone come up with a formula explaining the following?How many ways to place three distinguishable tokens on the white spaces of a $4$-by-$4$ chess board?

Why can't devices on different VLANs, but on the same subnet, communicate?

Finding the path in a graph from A to B then back to A with a minimum of shared edges

A pet rabbit called Belle

When did F become S in typeography, and why?

Can undead you have reanimated wait inside a portable hole?

Windows 10: How to Lock (not sleep) laptop on lid close?

How do I add random spotting to the same face in cycles?

How to pronounce 1ターン?

Python - Fishing Simulator

In horse breeding, what is the female equivalent of putting a horse out "to stud"?

Why did all the guest students take carriages to the Yule Ball?

Is above average number of years spent on PhD considered a red flag in future academia or industry positions?

Did the UK government pay "millions and millions of dollars" to try to snag Julian Assange?

Difference between "generating set" and free product?

University's motivation for having tenure-track positions

How does ice melt when immersed in water

What can I do if neighbor is blocking my solar panels intentionally?

ELI5: Why do they say that Israel would have been the fourth country to land a spacecraft on the Moon and why do they call it low cost?

How do you keep chess fun when your opponent constantly beats you?

How did passengers keep warm on sail ships?

Did the new image of black hole confirm the general theory of relativity?

Keeping a retro style to sci-fi spaceships?

Is it ok to offer lower paid work as a trial period before negotiating for a full-time job?

How should I replace vector<uint8_t>::const_iterator in an API?



What is special about square numbers here?



The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)The final state of 1000 light bulbs switched on/off by 1000 people passing byWord Problem Proof? (just for fun, help)Enigma : of Wizards, Dwarves and HatsCoin Arrangement Puzzlecreating a more complex sudoku (69x6)Determining the favored penny on a chessboardHow many different ways can I add three numbers to get a certain sum?Board game - winning strategyDifference PuzzlesCould someone come up with a formula explaining the following?How many ways to place three distinguishable tokens on the white spaces of a $4$-by-$4$ chess board?










2












$begingroup$


I'm not not schooled in math. I'm 50 years old and I only have about a grade 8 level. But I do enjoy math and heard a question in the show "Growing Pains of a Teenage Genius" that interested me. So please forgive me. I do not speak "math."



The question has been posted here already, but I don't think the correct answer was given, and since I'm new, I haven't earned the points to be able to comment on that post. So I've started my own post.



The question is, if you have 1000 pennies lined up in a row, all heads up, and you turn over every second penny, then every third penny, then every fourth penny, etc. all the way until you turn over the thousandth and last penny, which ones will be heads up?



I've figured out that the answer is that the square numbers will be heads up. It is only the square numbers that will be flipped an even number of times to land them in the position they started out in. But I don't know why that is.



What is it about square numbers that they are the only ones that get flipped an even number of times through the process of flipping every 2nd, 3rd, 4th,...etc, penny?



I thought it must have something to do with factoring since the primes will only get flipped once, but the widening gap between each succession of flips is a bit complicated to visualize, and I don't know how to work that with factoring square numbers.



Is there something special about factoring square numbers that's applicable here?



How do you visualize this problem mathematically?










share|cite|improve this question







New contributor




DeeH is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 1




    $begingroup$
    You may find this of interest: math.stackexchange.com/questions/11223/…
    $endgroup$
    – Minus One-Twelfth
    1 hour ago
















2












$begingroup$


I'm not not schooled in math. I'm 50 years old and I only have about a grade 8 level. But I do enjoy math and heard a question in the show "Growing Pains of a Teenage Genius" that interested me. So please forgive me. I do not speak "math."



The question has been posted here already, but I don't think the correct answer was given, and since I'm new, I haven't earned the points to be able to comment on that post. So I've started my own post.



The question is, if you have 1000 pennies lined up in a row, all heads up, and you turn over every second penny, then every third penny, then every fourth penny, etc. all the way until you turn over the thousandth and last penny, which ones will be heads up?



I've figured out that the answer is that the square numbers will be heads up. It is only the square numbers that will be flipped an even number of times to land them in the position they started out in. But I don't know why that is.



What is it about square numbers that they are the only ones that get flipped an even number of times through the process of flipping every 2nd, 3rd, 4th,...etc, penny?



I thought it must have something to do with factoring since the primes will only get flipped once, but the widening gap between each succession of flips is a bit complicated to visualize, and I don't know how to work that with factoring square numbers.



Is there something special about factoring square numbers that's applicable here?



How do you visualize this problem mathematically?










share|cite|improve this question







New contributor




DeeH is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 1




    $begingroup$
    You may find this of interest: math.stackexchange.com/questions/11223/…
    $endgroup$
    – Minus One-Twelfth
    1 hour ago














2












2








2





$begingroup$


I'm not not schooled in math. I'm 50 years old and I only have about a grade 8 level. But I do enjoy math and heard a question in the show "Growing Pains of a Teenage Genius" that interested me. So please forgive me. I do not speak "math."



The question has been posted here already, but I don't think the correct answer was given, and since I'm new, I haven't earned the points to be able to comment on that post. So I've started my own post.



The question is, if you have 1000 pennies lined up in a row, all heads up, and you turn over every second penny, then every third penny, then every fourth penny, etc. all the way until you turn over the thousandth and last penny, which ones will be heads up?



I've figured out that the answer is that the square numbers will be heads up. It is only the square numbers that will be flipped an even number of times to land them in the position they started out in. But I don't know why that is.



What is it about square numbers that they are the only ones that get flipped an even number of times through the process of flipping every 2nd, 3rd, 4th,...etc, penny?



I thought it must have something to do with factoring since the primes will only get flipped once, but the widening gap between each succession of flips is a bit complicated to visualize, and I don't know how to work that with factoring square numbers.



Is there something special about factoring square numbers that's applicable here?



How do you visualize this problem mathematically?










share|cite|improve this question







New contributor




DeeH is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




I'm not not schooled in math. I'm 50 years old and I only have about a grade 8 level. But I do enjoy math and heard a question in the show "Growing Pains of a Teenage Genius" that interested me. So please forgive me. I do not speak "math."



The question has been posted here already, but I don't think the correct answer was given, and since I'm new, I haven't earned the points to be able to comment on that post. So I've started my own post.



The question is, if you have 1000 pennies lined up in a row, all heads up, and you turn over every second penny, then every third penny, then every fourth penny, etc. all the way until you turn over the thousandth and last penny, which ones will be heads up?



I've figured out that the answer is that the square numbers will be heads up. It is only the square numbers that will be flipped an even number of times to land them in the position they started out in. But I don't know why that is.



What is it about square numbers that they are the only ones that get flipped an even number of times through the process of flipping every 2nd, 3rd, 4th,...etc, penny?



I thought it must have something to do with factoring since the primes will only get flipped once, but the widening gap between each succession of flips is a bit complicated to visualize, and I don't know how to work that with factoring square numbers.



Is there something special about factoring square numbers that's applicable here?



How do you visualize this problem mathematically?







puzzle






share|cite|improve this question







New contributor




DeeH is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question







New contributor




DeeH is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question






New contributor




DeeH is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 1 hour ago









DeeHDeeH

112




112




New contributor




DeeH is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





DeeH is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






DeeH is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 1




    $begingroup$
    You may find this of interest: math.stackexchange.com/questions/11223/…
    $endgroup$
    – Minus One-Twelfth
    1 hour ago













  • 1




    $begingroup$
    You may find this of interest: math.stackexchange.com/questions/11223/…
    $endgroup$
    – Minus One-Twelfth
    1 hour ago








1




1




$begingroup$
You may find this of interest: math.stackexchange.com/questions/11223/…
$endgroup$
– Minus One-Twelfth
1 hour ago





$begingroup$
You may find this of interest: math.stackexchange.com/questions/11223/…
$endgroup$
– Minus One-Twelfth
1 hour ago











1 Answer
1






active

oldest

votes


















4












$begingroup$

Each penny will be flipped a number of times equal to the number of divisors it has (including or not including $1$ based on the specific wording of the problem).



Supposing that $d$ is a divisor of $n$, i.e. that there is some $k$ such that $n = dtimes k$, then $k$ is also a divisor. In the event that $k$ is different than $d$ then it will be counted separately than $d$ when counting the total number of divisors. In this way, every single divisor $d$ of $n$ that we wish to count will have a corresponding different divisor $k=fracnd$.



All except the circumstance where $n$ happens to be a square number $n=r^2$ in which case you have $r$ is a divisor and the corresponding paired divisor $fracnr$ is again equal to $r$ and so is not distinct and need not be counted a second time.



Let's look at $12$ for an example.



$12$ has the divisors $colorred1,colorblue2,colorpurple3,colorpurple4,colorblue6,colorred12$. Note how the numbers with matching colors are paired together and multiply together to give $12$.



Now, let's look at a square number as an example like $16$.



$16$ has the divisors $colorred1,colorblue2,colorpurple4,colorblue8,colorred16$. Notice here again we have the numbers with matching color multiply together to get $16$. However, in the center since $16$ is square you only have one number of that color, not two, again because the corresponding divisor associated with it happens to be the same number. This pattern continues for all numbers. Every square number has an odd number of divisors and every non-square number has an even number of divisors and it is for this reason that the only pennies left turned heads up will be the ones at the square number positions.






share|cite|improve this answer









$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );






    DeeH is a new contributor. Be nice, and check out our Code of Conduct.









    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3186800%2fwhat-is-special-about-square-numbers-here%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    Each penny will be flipped a number of times equal to the number of divisors it has (including or not including $1$ based on the specific wording of the problem).



    Supposing that $d$ is a divisor of $n$, i.e. that there is some $k$ such that $n = dtimes k$, then $k$ is also a divisor. In the event that $k$ is different than $d$ then it will be counted separately than $d$ when counting the total number of divisors. In this way, every single divisor $d$ of $n$ that we wish to count will have a corresponding different divisor $k=fracnd$.



    All except the circumstance where $n$ happens to be a square number $n=r^2$ in which case you have $r$ is a divisor and the corresponding paired divisor $fracnr$ is again equal to $r$ and so is not distinct and need not be counted a second time.



    Let's look at $12$ for an example.



    $12$ has the divisors $colorred1,colorblue2,colorpurple3,colorpurple4,colorblue6,colorred12$. Note how the numbers with matching colors are paired together and multiply together to give $12$.



    Now, let's look at a square number as an example like $16$.



    $16$ has the divisors $colorred1,colorblue2,colorpurple4,colorblue8,colorred16$. Notice here again we have the numbers with matching color multiply together to get $16$. However, in the center since $16$ is square you only have one number of that color, not two, again because the corresponding divisor associated with it happens to be the same number. This pattern continues for all numbers. Every square number has an odd number of divisors and every non-square number has an even number of divisors and it is for this reason that the only pennies left turned heads up will be the ones at the square number positions.






    share|cite|improve this answer









    $endgroup$

















      4












      $begingroup$

      Each penny will be flipped a number of times equal to the number of divisors it has (including or not including $1$ based on the specific wording of the problem).



      Supposing that $d$ is a divisor of $n$, i.e. that there is some $k$ such that $n = dtimes k$, then $k$ is also a divisor. In the event that $k$ is different than $d$ then it will be counted separately than $d$ when counting the total number of divisors. In this way, every single divisor $d$ of $n$ that we wish to count will have a corresponding different divisor $k=fracnd$.



      All except the circumstance where $n$ happens to be a square number $n=r^2$ in which case you have $r$ is a divisor and the corresponding paired divisor $fracnr$ is again equal to $r$ and so is not distinct and need not be counted a second time.



      Let's look at $12$ for an example.



      $12$ has the divisors $colorred1,colorblue2,colorpurple3,colorpurple4,colorblue6,colorred12$. Note how the numbers with matching colors are paired together and multiply together to give $12$.



      Now, let's look at a square number as an example like $16$.



      $16$ has the divisors $colorred1,colorblue2,colorpurple4,colorblue8,colorred16$. Notice here again we have the numbers with matching color multiply together to get $16$. However, in the center since $16$ is square you only have one number of that color, not two, again because the corresponding divisor associated with it happens to be the same number. This pattern continues for all numbers. Every square number has an odd number of divisors and every non-square number has an even number of divisors and it is for this reason that the only pennies left turned heads up will be the ones at the square number positions.






      share|cite|improve this answer









      $endgroup$















        4












        4








        4





        $begingroup$

        Each penny will be flipped a number of times equal to the number of divisors it has (including or not including $1$ based on the specific wording of the problem).



        Supposing that $d$ is a divisor of $n$, i.e. that there is some $k$ such that $n = dtimes k$, then $k$ is also a divisor. In the event that $k$ is different than $d$ then it will be counted separately than $d$ when counting the total number of divisors. In this way, every single divisor $d$ of $n$ that we wish to count will have a corresponding different divisor $k=fracnd$.



        All except the circumstance where $n$ happens to be a square number $n=r^2$ in which case you have $r$ is a divisor and the corresponding paired divisor $fracnr$ is again equal to $r$ and so is not distinct and need not be counted a second time.



        Let's look at $12$ for an example.



        $12$ has the divisors $colorred1,colorblue2,colorpurple3,colorpurple4,colorblue6,colorred12$. Note how the numbers with matching colors are paired together and multiply together to give $12$.



        Now, let's look at a square number as an example like $16$.



        $16$ has the divisors $colorred1,colorblue2,colorpurple4,colorblue8,colorred16$. Notice here again we have the numbers with matching color multiply together to get $16$. However, in the center since $16$ is square you only have one number of that color, not two, again because the corresponding divisor associated with it happens to be the same number. This pattern continues for all numbers. Every square number has an odd number of divisors and every non-square number has an even number of divisors and it is for this reason that the only pennies left turned heads up will be the ones at the square number positions.






        share|cite|improve this answer









        $endgroup$



        Each penny will be flipped a number of times equal to the number of divisors it has (including or not including $1$ based on the specific wording of the problem).



        Supposing that $d$ is a divisor of $n$, i.e. that there is some $k$ such that $n = dtimes k$, then $k$ is also a divisor. In the event that $k$ is different than $d$ then it will be counted separately than $d$ when counting the total number of divisors. In this way, every single divisor $d$ of $n$ that we wish to count will have a corresponding different divisor $k=fracnd$.



        All except the circumstance where $n$ happens to be a square number $n=r^2$ in which case you have $r$ is a divisor and the corresponding paired divisor $fracnr$ is again equal to $r$ and so is not distinct and need not be counted a second time.



        Let's look at $12$ for an example.



        $12$ has the divisors $colorred1,colorblue2,colorpurple3,colorpurple4,colorblue6,colorred12$. Note how the numbers with matching colors are paired together and multiply together to give $12$.



        Now, let's look at a square number as an example like $16$.



        $16$ has the divisors $colorred1,colorblue2,colorpurple4,colorblue8,colorred16$. Notice here again we have the numbers with matching color multiply together to get $16$. However, in the center since $16$ is square you only have one number of that color, not two, again because the corresponding divisor associated with it happens to be the same number. This pattern continues for all numbers. Every square number has an odd number of divisors and every non-square number has an even number of divisors and it is for this reason that the only pennies left turned heads up will be the ones at the square number positions.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 1 hour ago









        JMoravitzJMoravitz

        49k43990




        49k43990




















            DeeH is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            DeeH is a new contributor. Be nice, and check out our Code of Conduct.












            DeeH is a new contributor. Be nice, and check out our Code of Conduct.











            DeeH is a new contributor. Be nice, and check out our Code of Conduct.














            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3186800%2fwhat-is-special-about-square-numbers-here%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Are there any AGPL-style licences that require source code modifications to be public? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Force derivative works to be publicAre there any GPL like licenses for Apple App Store?Do you violate the GPL if you provide source code that cannot be compiled?GPL - is it distribution to use libraries in an appliance loaned to customers?Distributing App for free which uses GPL'ed codeModifications of server software under GPL, with web/CLI interfaceDoes using an AGPLv3-licensed library prevent me from dual-licensing my own source code?Can I publish only select code under GPLv3 from a private project?Is there published precedent regarding the scope of covered work that uses AGPL software?If MIT licensed code links to GPL licensed code what should be the license of the resulting binary program?If I use a public API endpoint that has its source code licensed under AGPL in my app, do I need to disclose my source?

            2013 GY136 Descoberta | Órbita | Referências Menu de navegação«List Of Centaurs and Scattered-Disk Objects»«List of Known Trans-Neptunian Objects»

            Button changing it's text & action. Good or terrible? The 2019 Stack Overflow Developer Survey Results Are Inchanging text on user mouseoverShould certain functions be “hard to find” for powerusers to discover?Custom liking function - do I need user login?Using different checkbox style for different checkbox behaviorBest Practices: Save and Exit in Software UIInteraction with remote validated formMore efficient UI to progress the user through a complicated process?Designing a popup notice for a gameShould bulk-editing functions be hidden until a table row is selected, or is there a better solution?Is it bad practice to disable (replace) the context menu?