Spaces in which all closed sets are regular closed The Next CEO of Stack OverflowA space is regular if each closed set $Z$ is the intersection of all open sets containing $Z$?Examples of topologies in which all open sets are regular?All zero dimensional spaces are completely regular.All finite Baire measures are Closed-regular?On the small first countable regular spacesShow that if $X$ and $Y$ are regular, then so is the product space $Xtimes Y$.Regular spaces and Hausdorff spaceHow to Show that Points and Closed Sets Can be Separated by Closed Sets in a T3 (Regular) SpaceSaturated sets and topological spacesOn regular closed sets which are not open-closed

Are the names of these months realistic?

Is dried pee considered dirt?

(How) Could a medieval fantasy world survive a magic-induced "nuclear winter"?

What connection does MS Office have to Netscape Navigator?

Do I need to write [sic] when including a quotation with a number less than 10 that isn't written out?

How do I fit a non linear curve?

If Nick Fury and Coulson already knew about aliens (Kree and Skrull) why did they wait until Thor's appearance to start making weapons?

Does the Idaho Potato Commission associate potato skins with healthy eating?

"Eavesdropping" vs "Listen in on"

Physiological effects of huge anime eyes

My ex-girlfriend uses my Apple ID to login to her iPad, do I have to give her my Apple ID password to reset it?

Is it okay to majorly distort historical facts while writing a fiction story?

What would be the main consequences for a country leaving the WTO?

Lucky Feat: How can "more than one creature spend a luck point to influence the outcome of a roll"?

Why is the US ranked as #45 in Press Freedom ratings, despite its extremely permissive free speech laws?

Aggressive Under-Indexing and no data for missing index

Is there an equivalent of cd - for cp or mv

Does Germany produce more waste than the US?

What does "shotgun unity" refer to here in this sentence?

Do scriptures give a method to recognize a truly self-realized person/jivanmukta?

How to use ReplaceAll on an expression that contains a rule

Players Circumventing the limitations of Wish

Computationally populating tables with probability data

Sulfuric acid symmetry point group



Spaces in which all closed sets are regular closed



The Next CEO of Stack OverflowA space is regular if each closed set $Z$ is the intersection of all open sets containing $Z$?Examples of topologies in which all open sets are regular?All zero dimensional spaces are completely regular.All finite Baire measures are Closed-regular?On the small first countable regular spacesShow that if $X$ and $Y$ are regular, then so is the product space $Xtimes Y$.Regular spaces and Hausdorff spaceHow to Show that Points and Closed Sets Can be Separated by Closed Sets in a T3 (Regular) SpaceSaturated sets and topological spacesOn regular closed sets which are not open-closed










2












$begingroup$


I was reading about the regular closed sets. The definition is




Let $X$ be a topological space and $Asubseteq X$. We say that $A$ is a regular closed if $A=textcl(textint(A))$




Then, one question came to my mind: is there a topological space $X$ such that $X$ isn't a discrete space and for that every closed subset of $X$ is a regular closed set?



Obviusly, if $X$ is discrete then every closed set is a regular closed, but, if $X$ isn't discrete, what happens? That example exists?



Thanks in advance.










share|cite|improve this question











$endgroup$
















    2












    $begingroup$


    I was reading about the regular closed sets. The definition is




    Let $X$ be a topological space and $Asubseteq X$. We say that $A$ is a regular closed if $A=textcl(textint(A))$




    Then, one question came to my mind: is there a topological space $X$ such that $X$ isn't a discrete space and for that every closed subset of $X$ is a regular closed set?



    Obviusly, if $X$ is discrete then every closed set is a regular closed, but, if $X$ isn't discrete, what happens? That example exists?



    Thanks in advance.










    share|cite|improve this question











    $endgroup$














      2












      2








      2





      $begingroup$


      I was reading about the regular closed sets. The definition is




      Let $X$ be a topological space and $Asubseteq X$. We say that $A$ is a regular closed if $A=textcl(textint(A))$




      Then, one question came to my mind: is there a topological space $X$ such that $X$ isn't a discrete space and for that every closed subset of $X$ is a regular closed set?



      Obviusly, if $X$ is discrete then every closed set is a regular closed, but, if $X$ isn't discrete, what happens? That example exists?



      Thanks in advance.










      share|cite|improve this question











      $endgroup$




      I was reading about the regular closed sets. The definition is




      Let $X$ be a topological space and $Asubseteq X$. We say that $A$ is a regular closed if $A=textcl(textint(A))$




      Then, one question came to my mind: is there a topological space $X$ such that $X$ isn't a discrete space and for that every closed subset of $X$ is a regular closed set?



      Obviusly, if $X$ is discrete then every closed set is a regular closed, but, if $X$ isn't discrete, what happens? That example exists?



      Thanks in advance.







      general-topology examples-counterexamples






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 26 mins ago









      Eric Wofsey

      191k14216349




      191k14216349










      asked 1 hour ago









      Carlos JiménezCarlos Jiménez

      2,4341621




      2,4341621




















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          Given a partition $P$ on a set $X$, we can define a topology whose open sets are unions of elements of $P$. In this topology, open sets and closed sets are the same, so all closed sets are regular closed. (If $P$ is the finest partition this is the discrete topology; if $P$ is the coarsest topology it is the indiscrete topology. Such topologies can also be characterized as the topologies in which closed sets and open sets coincide, or topologies whose $T_0$ quotient is discrete.)



          I claim, though, that these are the only examples. Indeed, suppose $X$ is a topological space in which all closed sets are regular closed. Suppose $x,yin X$ are such that $yinoverlinex$. Since $overliney$ is regular closed, it is the closure of its interior $U$ which is in particular nonempty, and we must have $yin U$ since $y$ is dense in $overliney$. Since $yinoverlinex$, we have $Usubseteq overlinex$ as well and so $xin U$. Thus $xin overlineU=overliney$ and so $overlinex=overliney$. We see then that $U$ is the interior of $overlinex$ and every element of $overlinex$ is in $U$ (since $yin U$ and $y$ was originally an arbitrary element of $overlinex$). Thus $U=overlinex$, so $overlinex$ is open.



          So, we have shown that the closure of each singleton in $X$ is a clopen set and is equal to the closure of any of its elements. It follows easily that the collection of closures of singletons is a partition of $X$, and a subset of $X$ is open iff it is a union of elements of this partition.






          share|cite|improve this answer









          $endgroup$




















            2












            $begingroup$

            You can take any set $X$ with trivial topology. Then every closed subset in $X$ is trivially regular.



            But if $X$ is $T_1$ and every closed subset is regular then $X$ is discrete.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              Is there a non trivial example? I don't mind the separation axiom.
              $endgroup$
              – Carlos Jiménez
              53 mins ago










            • $begingroup$
              @CarlosJiménez: A less trivial example would be a space $X=X_1sqcup X_2$ where both $X_1, X_2$ are open and have trivial topology. As I said, $T_1$ implies discreteness in your setting.
              $endgroup$
              – Moishe Kohan
              51 mins ago












            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3169975%2fspaces-in-which-all-closed-sets-are-regular-closed%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            Given a partition $P$ on a set $X$, we can define a topology whose open sets are unions of elements of $P$. In this topology, open sets and closed sets are the same, so all closed sets are regular closed. (If $P$ is the finest partition this is the discrete topology; if $P$ is the coarsest topology it is the indiscrete topology. Such topologies can also be characterized as the topologies in which closed sets and open sets coincide, or topologies whose $T_0$ quotient is discrete.)



            I claim, though, that these are the only examples. Indeed, suppose $X$ is a topological space in which all closed sets are regular closed. Suppose $x,yin X$ are such that $yinoverlinex$. Since $overliney$ is regular closed, it is the closure of its interior $U$ which is in particular nonempty, and we must have $yin U$ since $y$ is dense in $overliney$. Since $yinoverlinex$, we have $Usubseteq overlinex$ as well and so $xin U$. Thus $xin overlineU=overliney$ and so $overlinex=overliney$. We see then that $U$ is the interior of $overlinex$ and every element of $overlinex$ is in $U$ (since $yin U$ and $y$ was originally an arbitrary element of $overlinex$). Thus $U=overlinex$, so $overlinex$ is open.



            So, we have shown that the closure of each singleton in $X$ is a clopen set and is equal to the closure of any of its elements. It follows easily that the collection of closures of singletons is a partition of $X$, and a subset of $X$ is open iff it is a union of elements of this partition.






            share|cite|improve this answer









            $endgroup$

















              2












              $begingroup$

              Given a partition $P$ on a set $X$, we can define a topology whose open sets are unions of elements of $P$. In this topology, open sets and closed sets are the same, so all closed sets are regular closed. (If $P$ is the finest partition this is the discrete topology; if $P$ is the coarsest topology it is the indiscrete topology. Such topologies can also be characterized as the topologies in which closed sets and open sets coincide, or topologies whose $T_0$ quotient is discrete.)



              I claim, though, that these are the only examples. Indeed, suppose $X$ is a topological space in which all closed sets are regular closed. Suppose $x,yin X$ are such that $yinoverlinex$. Since $overliney$ is regular closed, it is the closure of its interior $U$ which is in particular nonempty, and we must have $yin U$ since $y$ is dense in $overliney$. Since $yinoverlinex$, we have $Usubseteq overlinex$ as well and so $xin U$. Thus $xin overlineU=overliney$ and so $overlinex=overliney$. We see then that $U$ is the interior of $overlinex$ and every element of $overlinex$ is in $U$ (since $yin U$ and $y$ was originally an arbitrary element of $overlinex$). Thus $U=overlinex$, so $overlinex$ is open.



              So, we have shown that the closure of each singleton in $X$ is a clopen set and is equal to the closure of any of its elements. It follows easily that the collection of closures of singletons is a partition of $X$, and a subset of $X$ is open iff it is a union of elements of this partition.






              share|cite|improve this answer









              $endgroup$















                2












                2








                2





                $begingroup$

                Given a partition $P$ on a set $X$, we can define a topology whose open sets are unions of elements of $P$. In this topology, open sets and closed sets are the same, so all closed sets are regular closed. (If $P$ is the finest partition this is the discrete topology; if $P$ is the coarsest topology it is the indiscrete topology. Such topologies can also be characterized as the topologies in which closed sets and open sets coincide, or topologies whose $T_0$ quotient is discrete.)



                I claim, though, that these are the only examples. Indeed, suppose $X$ is a topological space in which all closed sets are regular closed. Suppose $x,yin X$ are such that $yinoverlinex$. Since $overliney$ is regular closed, it is the closure of its interior $U$ which is in particular nonempty, and we must have $yin U$ since $y$ is dense in $overliney$. Since $yinoverlinex$, we have $Usubseteq overlinex$ as well and so $xin U$. Thus $xin overlineU=overliney$ and so $overlinex=overliney$. We see then that $U$ is the interior of $overlinex$ and every element of $overlinex$ is in $U$ (since $yin U$ and $y$ was originally an arbitrary element of $overlinex$). Thus $U=overlinex$, so $overlinex$ is open.



                So, we have shown that the closure of each singleton in $X$ is a clopen set and is equal to the closure of any of its elements. It follows easily that the collection of closures of singletons is a partition of $X$, and a subset of $X$ is open iff it is a union of elements of this partition.






                share|cite|improve this answer









                $endgroup$



                Given a partition $P$ on a set $X$, we can define a topology whose open sets are unions of elements of $P$. In this topology, open sets and closed sets are the same, so all closed sets are regular closed. (If $P$ is the finest partition this is the discrete topology; if $P$ is the coarsest topology it is the indiscrete topology. Such topologies can also be characterized as the topologies in which closed sets and open sets coincide, or topologies whose $T_0$ quotient is discrete.)



                I claim, though, that these are the only examples. Indeed, suppose $X$ is a topological space in which all closed sets are regular closed. Suppose $x,yin X$ are such that $yinoverlinex$. Since $overliney$ is regular closed, it is the closure of its interior $U$ which is in particular nonempty, and we must have $yin U$ since $y$ is dense in $overliney$. Since $yinoverlinex$, we have $Usubseteq overlinex$ as well and so $xin U$. Thus $xin overlineU=overliney$ and so $overlinex=overliney$. We see then that $U$ is the interior of $overlinex$ and every element of $overlinex$ is in $U$ (since $yin U$ and $y$ was originally an arbitrary element of $overlinex$). Thus $U=overlinex$, so $overlinex$ is open.



                So, we have shown that the closure of each singleton in $X$ is a clopen set and is equal to the closure of any of its elements. It follows easily that the collection of closures of singletons is a partition of $X$, and a subset of $X$ is open iff it is a union of elements of this partition.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 33 mins ago









                Eric WofseyEric Wofsey

                191k14216349




                191k14216349





















                    2












                    $begingroup$

                    You can take any set $X$ with trivial topology. Then every closed subset in $X$ is trivially regular.



                    But if $X$ is $T_1$ and every closed subset is regular then $X$ is discrete.






                    share|cite|improve this answer









                    $endgroup$












                    • $begingroup$
                      Is there a non trivial example? I don't mind the separation axiom.
                      $endgroup$
                      – Carlos Jiménez
                      53 mins ago










                    • $begingroup$
                      @CarlosJiménez: A less trivial example would be a space $X=X_1sqcup X_2$ where both $X_1, X_2$ are open and have trivial topology. As I said, $T_1$ implies discreteness in your setting.
                      $endgroup$
                      – Moishe Kohan
                      51 mins ago
















                    2












                    $begingroup$

                    You can take any set $X$ with trivial topology. Then every closed subset in $X$ is trivially regular.



                    But if $X$ is $T_1$ and every closed subset is regular then $X$ is discrete.






                    share|cite|improve this answer









                    $endgroup$












                    • $begingroup$
                      Is there a non trivial example? I don't mind the separation axiom.
                      $endgroup$
                      – Carlos Jiménez
                      53 mins ago










                    • $begingroup$
                      @CarlosJiménez: A less trivial example would be a space $X=X_1sqcup X_2$ where both $X_1, X_2$ are open and have trivial topology. As I said, $T_1$ implies discreteness in your setting.
                      $endgroup$
                      – Moishe Kohan
                      51 mins ago














                    2












                    2








                    2





                    $begingroup$

                    You can take any set $X$ with trivial topology. Then every closed subset in $X$ is trivially regular.



                    But if $X$ is $T_1$ and every closed subset is regular then $X$ is discrete.






                    share|cite|improve this answer









                    $endgroup$



                    You can take any set $X$ with trivial topology. Then every closed subset in $X$ is trivially regular.



                    But if $X$ is $T_1$ and every closed subset is regular then $X$ is discrete.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 55 mins ago









                    Moishe KohanMoishe Kohan

                    48.4k344110




                    48.4k344110











                    • $begingroup$
                      Is there a non trivial example? I don't mind the separation axiom.
                      $endgroup$
                      – Carlos Jiménez
                      53 mins ago










                    • $begingroup$
                      @CarlosJiménez: A less trivial example would be a space $X=X_1sqcup X_2$ where both $X_1, X_2$ are open and have trivial topology. As I said, $T_1$ implies discreteness in your setting.
                      $endgroup$
                      – Moishe Kohan
                      51 mins ago

















                    • $begingroup$
                      Is there a non trivial example? I don't mind the separation axiom.
                      $endgroup$
                      – Carlos Jiménez
                      53 mins ago










                    • $begingroup$
                      @CarlosJiménez: A less trivial example would be a space $X=X_1sqcup X_2$ where both $X_1, X_2$ are open and have trivial topology. As I said, $T_1$ implies discreteness in your setting.
                      $endgroup$
                      – Moishe Kohan
                      51 mins ago
















                    $begingroup$
                    Is there a non trivial example? I don't mind the separation axiom.
                    $endgroup$
                    – Carlos Jiménez
                    53 mins ago




                    $begingroup$
                    Is there a non trivial example? I don't mind the separation axiom.
                    $endgroup$
                    – Carlos Jiménez
                    53 mins ago












                    $begingroup$
                    @CarlosJiménez: A less trivial example would be a space $X=X_1sqcup X_2$ where both $X_1, X_2$ are open and have trivial topology. As I said, $T_1$ implies discreteness in your setting.
                    $endgroup$
                    – Moishe Kohan
                    51 mins ago





                    $begingroup$
                    @CarlosJiménez: A less trivial example would be a space $X=X_1sqcup X_2$ where both $X_1, X_2$ are open and have trivial topology. As I said, $T_1$ implies discreteness in your setting.
                    $endgroup$
                    – Moishe Kohan
                    51 mins ago


















                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3169975%2fspaces-in-which-all-closed-sets-are-regular-closed%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Are there any AGPL-style licences that require source code modifications to be public? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Force derivative works to be publicAre there any GPL like licenses for Apple App Store?Do you violate the GPL if you provide source code that cannot be compiled?GPL - is it distribution to use libraries in an appliance loaned to customers?Distributing App for free which uses GPL'ed codeModifications of server software under GPL, with web/CLI interfaceDoes using an AGPLv3-licensed library prevent me from dual-licensing my own source code?Can I publish only select code under GPLv3 from a private project?Is there published precedent regarding the scope of covered work that uses AGPL software?If MIT licensed code links to GPL licensed code what should be the license of the resulting binary program?If I use a public API endpoint that has its source code licensed under AGPL in my app, do I need to disclose my source?

                    2013 GY136 Descoberta | Órbita | Referências Menu de navegação«List Of Centaurs and Scattered-Disk Objects»«List of Known Trans-Neptunian Objects»

                    Metrô de Los Teques Índice Linhas | Estações | Ver também | Referências Ligações externas | Menu de navegação«INSTITUCIÓN»«Mapa de rutas»originalMetrô de Los TequesC.A. Metro Los Teques |Alcaldía de Guaicaipuro – Sitio OficialGobernacion de Mirandaeeeeeee