How do you solve the twins Paradox? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern) 2019 Moderator Election Q&A - Question CollectionWhat is the proper way to explain the twin paradox?Is time dilation an illusion? Variation on the twins paradoxTwin paradox caused by gravitational difference in spaceTwins paradox questionTheory of relativity paradox?Explanation for a much simpler version of the twin paradox?What is the proper way to explain the twin paradox?The twin paradox in a universe with a torus topologyTwin Paradox on steroids - who would be older?The twin Paradox, What if they never meet and they are observed by an outside observer?How do we explain this new take on the old Twins Paradox?

How does the math work when buying airline miles?

Chinese Seal on silk painting - what does it mean?

Can anything be seen from the center of the Boötes void? How dark would it be?

What do you call the main part of a joke?

Why wasn't DOSKEY integrated with COMMAND.COM?

Question about debouncing - delay of state change

How to compare two different files line by line in unix?

Is it possible for SQL statements to execute concurrently within a single session in SQL Server?

Effects on objects due to a brief relocation of massive amounts of mass

SF book about people trapped in a series of worlds they imagine

Why is Nikon 1.4g better when Nikon 1.8g is sharper?

Disembodied hand growing fangs

Why is it faster to reheat something than it is to cook it?

How to react to hostile behavior from a senior developer?

What is the meaning of 'breadth' in breadth first search?

Can the Great Weapon Master feat's damage bonus and accuracy penalty apply to attacks from the Spiritual Weapon spell?

What is the difference between globalisation and imperialism?

What order were files/directories outputted in dir?

Illegal assignment from sObject to Id

How does Python know the values already stored in its memory?

What would you call this weird metallic apparatus that allows you to lift people?

How do I use the new nonlinear finite element in Mathematica 12 for this equation?

Why should I vote and accept answers?

AppleTVs create a chatty alternate WiFi network



How do you solve the twins Paradox?



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)
2019 Moderator Election Q&A - Question CollectionWhat is the proper way to explain the twin paradox?Is time dilation an illusion? Variation on the twins paradoxTwin paradox caused by gravitational difference in spaceTwins paradox questionTheory of relativity paradox?Explanation for a much simpler version of the twin paradox?What is the proper way to explain the twin paradox?The twin paradox in a universe with a torus topologyTwin Paradox on steroids - who would be older?The twin Paradox, What if they never meet and they are observed by an outside observer?How do we explain this new take on the old Twins Paradox?










1












$begingroup$


I'm a beginner physics student only studying elementary AP-level physics and calculus, so when I came across the conceptual basis of the twins paradox I was, of course curious. People often explain the paradox away by explaining how the symmetry from each perspective is broken, without satisfactorily illustrating why. Before I ask my question I want to explain from my understanding-



So you have a twin on earth who understands that his twin is on a spaceship accelerating away arbitrarily close to the speed of light then returning home. He accelerates away and comes back, and I understand why the twin on the spaceship believes the other is older- Because on a spacetime diagram, we recognize that the axis flips and the twin on the ship understands that the relativistic affect on him will result in a difference.



So my question is: How do both observers figure out WHO is accelerating to begin with? To illustrate my problem with the paradox, I instead imagine two twins floating in space 1 meter apart in a vacuum, until one sees the other accelerate to near light speed. If we assume that the twins will return to their initial position at 1 meter apart, only ONE of them will age. The problem is figuring out who?



This is because: If twin A assumes he is stationary, and twin B assumes he is accelerating, then they can work out the respective maths. But what happens if both assume that they are accelerating, or that both are stationary? This is what results in the apparent paradox isn't it? So the real question should be: How do we know who is objectively accelerating?










share|cite|improve this question









New contributor




Roberto Singer is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 3




    $begingroup$
    Possible duplicate of What is the proper way to explain the twin paradox?
    $endgroup$
    – StephenG
    3 hours ago











  • $begingroup$
    No, these answers all assume from the getgo that one twin is accelerating and knows he is accelerating, and the other twin is stationary and knows he is stationary, and both observers agree on who is what. If all you know is that the other observer is accelerating, how do you measure which of the twins is really experiencing acceleration? The paradox arises when each twin assumes he is stationary/accelerating. If they agree on which is which its easy to make the calculations, but how can they objectively measure whose frame is consistently inertial?
    $endgroup$
    – Roberto Singer
    3 hours ago











  • $begingroup$
    @RobertoSinger Acceleration isn't subjective
    $endgroup$
    – Aaron Stevens
    2 hours ago















1












$begingroup$


I'm a beginner physics student only studying elementary AP-level physics and calculus, so when I came across the conceptual basis of the twins paradox I was, of course curious. People often explain the paradox away by explaining how the symmetry from each perspective is broken, without satisfactorily illustrating why. Before I ask my question I want to explain from my understanding-



So you have a twin on earth who understands that his twin is on a spaceship accelerating away arbitrarily close to the speed of light then returning home. He accelerates away and comes back, and I understand why the twin on the spaceship believes the other is older- Because on a spacetime diagram, we recognize that the axis flips and the twin on the ship understands that the relativistic affect on him will result in a difference.



So my question is: How do both observers figure out WHO is accelerating to begin with? To illustrate my problem with the paradox, I instead imagine two twins floating in space 1 meter apart in a vacuum, until one sees the other accelerate to near light speed. If we assume that the twins will return to their initial position at 1 meter apart, only ONE of them will age. The problem is figuring out who?



This is because: If twin A assumes he is stationary, and twin B assumes he is accelerating, then they can work out the respective maths. But what happens if both assume that they are accelerating, or that both are stationary? This is what results in the apparent paradox isn't it? So the real question should be: How do we know who is objectively accelerating?










share|cite|improve this question









New contributor




Roberto Singer is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 3




    $begingroup$
    Possible duplicate of What is the proper way to explain the twin paradox?
    $endgroup$
    – StephenG
    3 hours ago











  • $begingroup$
    No, these answers all assume from the getgo that one twin is accelerating and knows he is accelerating, and the other twin is stationary and knows he is stationary, and both observers agree on who is what. If all you know is that the other observer is accelerating, how do you measure which of the twins is really experiencing acceleration? The paradox arises when each twin assumes he is stationary/accelerating. If they agree on which is which its easy to make the calculations, but how can they objectively measure whose frame is consistently inertial?
    $endgroup$
    – Roberto Singer
    3 hours ago











  • $begingroup$
    @RobertoSinger Acceleration isn't subjective
    $endgroup$
    – Aaron Stevens
    2 hours ago













1












1








1





$begingroup$


I'm a beginner physics student only studying elementary AP-level physics and calculus, so when I came across the conceptual basis of the twins paradox I was, of course curious. People often explain the paradox away by explaining how the symmetry from each perspective is broken, without satisfactorily illustrating why. Before I ask my question I want to explain from my understanding-



So you have a twin on earth who understands that his twin is on a spaceship accelerating away arbitrarily close to the speed of light then returning home. He accelerates away and comes back, and I understand why the twin on the spaceship believes the other is older- Because on a spacetime diagram, we recognize that the axis flips and the twin on the ship understands that the relativistic affect on him will result in a difference.



So my question is: How do both observers figure out WHO is accelerating to begin with? To illustrate my problem with the paradox, I instead imagine two twins floating in space 1 meter apart in a vacuum, until one sees the other accelerate to near light speed. If we assume that the twins will return to their initial position at 1 meter apart, only ONE of them will age. The problem is figuring out who?



This is because: If twin A assumes he is stationary, and twin B assumes he is accelerating, then they can work out the respective maths. But what happens if both assume that they are accelerating, or that both are stationary? This is what results in the apparent paradox isn't it? So the real question should be: How do we know who is objectively accelerating?










share|cite|improve this question









New contributor




Roberto Singer is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




I'm a beginner physics student only studying elementary AP-level physics and calculus, so when I came across the conceptual basis of the twins paradox I was, of course curious. People often explain the paradox away by explaining how the symmetry from each perspective is broken, without satisfactorily illustrating why. Before I ask my question I want to explain from my understanding-



So you have a twin on earth who understands that his twin is on a spaceship accelerating away arbitrarily close to the speed of light then returning home. He accelerates away and comes back, and I understand why the twin on the spaceship believes the other is older- Because on a spacetime diagram, we recognize that the axis flips and the twin on the ship understands that the relativistic affect on him will result in a difference.



So my question is: How do both observers figure out WHO is accelerating to begin with? To illustrate my problem with the paradox, I instead imagine two twins floating in space 1 meter apart in a vacuum, until one sees the other accelerate to near light speed. If we assume that the twins will return to their initial position at 1 meter apart, only ONE of them will age. The problem is figuring out who?



This is because: If twin A assumes he is stationary, and twin B assumes he is accelerating, then they can work out the respective maths. But what happens if both assume that they are accelerating, or that both are stationary? This is what results in the apparent paradox isn't it? So the real question should be: How do we know who is objectively accelerating?







special-relativity reference-frames acceleration






share|cite|improve this question









New contributor




Roberto Singer is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




Roberto Singer is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 2 hours ago









Qmechanic

108k122001249




108k122001249






New contributor




Roberto Singer is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 3 hours ago









Roberto SingerRoberto Singer

82




82




New contributor




Roberto Singer is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Roberto Singer is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Roberto Singer is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 3




    $begingroup$
    Possible duplicate of What is the proper way to explain the twin paradox?
    $endgroup$
    – StephenG
    3 hours ago











  • $begingroup$
    No, these answers all assume from the getgo that one twin is accelerating and knows he is accelerating, and the other twin is stationary and knows he is stationary, and both observers agree on who is what. If all you know is that the other observer is accelerating, how do you measure which of the twins is really experiencing acceleration? The paradox arises when each twin assumes he is stationary/accelerating. If they agree on which is which its easy to make the calculations, but how can they objectively measure whose frame is consistently inertial?
    $endgroup$
    – Roberto Singer
    3 hours ago











  • $begingroup$
    @RobertoSinger Acceleration isn't subjective
    $endgroup$
    – Aaron Stevens
    2 hours ago












  • 3




    $begingroup$
    Possible duplicate of What is the proper way to explain the twin paradox?
    $endgroup$
    – StephenG
    3 hours ago











  • $begingroup$
    No, these answers all assume from the getgo that one twin is accelerating and knows he is accelerating, and the other twin is stationary and knows he is stationary, and both observers agree on who is what. If all you know is that the other observer is accelerating, how do you measure which of the twins is really experiencing acceleration? The paradox arises when each twin assumes he is stationary/accelerating. If they agree on which is which its easy to make the calculations, but how can they objectively measure whose frame is consistently inertial?
    $endgroup$
    – Roberto Singer
    3 hours ago











  • $begingroup$
    @RobertoSinger Acceleration isn't subjective
    $endgroup$
    – Aaron Stevens
    2 hours ago







3




3




$begingroup$
Possible duplicate of What is the proper way to explain the twin paradox?
$endgroup$
– StephenG
3 hours ago





$begingroup$
Possible duplicate of What is the proper way to explain the twin paradox?
$endgroup$
– StephenG
3 hours ago













$begingroup$
No, these answers all assume from the getgo that one twin is accelerating and knows he is accelerating, and the other twin is stationary and knows he is stationary, and both observers agree on who is what. If all you know is that the other observer is accelerating, how do you measure which of the twins is really experiencing acceleration? The paradox arises when each twin assumes he is stationary/accelerating. If they agree on which is which its easy to make the calculations, but how can they objectively measure whose frame is consistently inertial?
$endgroup$
– Roberto Singer
3 hours ago





$begingroup$
No, these answers all assume from the getgo that one twin is accelerating and knows he is accelerating, and the other twin is stationary and knows he is stationary, and both observers agree on who is what. If all you know is that the other observer is accelerating, how do you measure which of the twins is really experiencing acceleration? The paradox arises when each twin assumes he is stationary/accelerating. If they agree on which is which its easy to make the calculations, but how can they objectively measure whose frame is consistently inertial?
$endgroup$
– Roberto Singer
3 hours ago













$begingroup$
@RobertoSinger Acceleration isn't subjective
$endgroup$
– Aaron Stevens
2 hours ago




$begingroup$
@RobertoSinger Acceleration isn't subjective
$endgroup$
– Aaron Stevens
2 hours ago










1 Answer
1






active

oldest

votes


















4












$begingroup$

The resolution to the paradox is that, although velocity is relative, acceleration is in general not, so the situation is not actually symmetric. An easy way to see this is to imagine what you feel when your car accelerates: you feel your seat push you forward, or when you slam on the brakes you feel your seatbelt hold you back. You do not feel the same effects when you look at some other car that is accelerating "relative to you."



These are measurable effects, so each twin can independently determine whether she is herself accelerating, in addition to looking at the other twin's motion. Thus there is no ambiguity in which twin accelerates.



Note: I'm posting this answer because it is simple, even though this is indeed a duplicate of What is the proper way to explain the twin paradox. See the answers there for a more detailed description of what is actually going on.






share|cite|improve this answer








New contributor




Will is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$












  • $begingroup$
    That's actually a perfect answer, exactly what I was looking for! Thanks!
    $endgroup$
    – Roberto Singer
    2 hours ago










  • $begingroup$
    Cheers, I'm so glad it was helpful! Good luck with your continued study :)
    $endgroup$
    – Will
    2 hours ago











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "151"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);






Roberto Singer is a new contributor. Be nice, and check out our Code of Conduct.









draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f473667%2fhow-do-you-solve-the-twins-paradox%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









4












$begingroup$

The resolution to the paradox is that, although velocity is relative, acceleration is in general not, so the situation is not actually symmetric. An easy way to see this is to imagine what you feel when your car accelerates: you feel your seat push you forward, or when you slam on the brakes you feel your seatbelt hold you back. You do not feel the same effects when you look at some other car that is accelerating "relative to you."



These are measurable effects, so each twin can independently determine whether she is herself accelerating, in addition to looking at the other twin's motion. Thus there is no ambiguity in which twin accelerates.



Note: I'm posting this answer because it is simple, even though this is indeed a duplicate of What is the proper way to explain the twin paradox. See the answers there for a more detailed description of what is actually going on.






share|cite|improve this answer








New contributor




Will is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$












  • $begingroup$
    That's actually a perfect answer, exactly what I was looking for! Thanks!
    $endgroup$
    – Roberto Singer
    2 hours ago










  • $begingroup$
    Cheers, I'm so glad it was helpful! Good luck with your continued study :)
    $endgroup$
    – Will
    2 hours ago















4












$begingroup$

The resolution to the paradox is that, although velocity is relative, acceleration is in general not, so the situation is not actually symmetric. An easy way to see this is to imagine what you feel when your car accelerates: you feel your seat push you forward, or when you slam on the brakes you feel your seatbelt hold you back. You do not feel the same effects when you look at some other car that is accelerating "relative to you."



These are measurable effects, so each twin can independently determine whether she is herself accelerating, in addition to looking at the other twin's motion. Thus there is no ambiguity in which twin accelerates.



Note: I'm posting this answer because it is simple, even though this is indeed a duplicate of What is the proper way to explain the twin paradox. See the answers there for a more detailed description of what is actually going on.






share|cite|improve this answer








New contributor




Will is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$












  • $begingroup$
    That's actually a perfect answer, exactly what I was looking for! Thanks!
    $endgroup$
    – Roberto Singer
    2 hours ago










  • $begingroup$
    Cheers, I'm so glad it was helpful! Good luck with your continued study :)
    $endgroup$
    – Will
    2 hours ago













4












4








4





$begingroup$

The resolution to the paradox is that, although velocity is relative, acceleration is in general not, so the situation is not actually symmetric. An easy way to see this is to imagine what you feel when your car accelerates: you feel your seat push you forward, or when you slam on the brakes you feel your seatbelt hold you back. You do not feel the same effects when you look at some other car that is accelerating "relative to you."



These are measurable effects, so each twin can independently determine whether she is herself accelerating, in addition to looking at the other twin's motion. Thus there is no ambiguity in which twin accelerates.



Note: I'm posting this answer because it is simple, even though this is indeed a duplicate of What is the proper way to explain the twin paradox. See the answers there for a more detailed description of what is actually going on.






share|cite|improve this answer








New contributor




Will is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$



The resolution to the paradox is that, although velocity is relative, acceleration is in general not, so the situation is not actually symmetric. An easy way to see this is to imagine what you feel when your car accelerates: you feel your seat push you forward, or when you slam on the brakes you feel your seatbelt hold you back. You do not feel the same effects when you look at some other car that is accelerating "relative to you."



These are measurable effects, so each twin can independently determine whether she is herself accelerating, in addition to looking at the other twin's motion. Thus there is no ambiguity in which twin accelerates.



Note: I'm posting this answer because it is simple, even though this is indeed a duplicate of What is the proper way to explain the twin paradox. See the answers there for a more detailed description of what is actually going on.







share|cite|improve this answer








New contributor




Will is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this answer



share|cite|improve this answer






New contributor




Will is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









answered 3 hours ago









WillWill

1114




1114




New contributor




Will is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Will is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Will is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    That's actually a perfect answer, exactly what I was looking for! Thanks!
    $endgroup$
    – Roberto Singer
    2 hours ago










  • $begingroup$
    Cheers, I'm so glad it was helpful! Good luck with your continued study :)
    $endgroup$
    – Will
    2 hours ago
















  • $begingroup$
    That's actually a perfect answer, exactly what I was looking for! Thanks!
    $endgroup$
    – Roberto Singer
    2 hours ago










  • $begingroup$
    Cheers, I'm so glad it was helpful! Good luck with your continued study :)
    $endgroup$
    – Will
    2 hours ago















$begingroup$
That's actually a perfect answer, exactly what I was looking for! Thanks!
$endgroup$
– Roberto Singer
2 hours ago




$begingroup$
That's actually a perfect answer, exactly what I was looking for! Thanks!
$endgroup$
– Roberto Singer
2 hours ago












$begingroup$
Cheers, I'm so glad it was helpful! Good luck with your continued study :)
$endgroup$
– Will
2 hours ago




$begingroup$
Cheers, I'm so glad it was helpful! Good luck with your continued study :)
$endgroup$
– Will
2 hours ago










Roberto Singer is a new contributor. Be nice, and check out our Code of Conduct.









draft saved

draft discarded


















Roberto Singer is a new contributor. Be nice, and check out our Code of Conduct.












Roberto Singer is a new contributor. Be nice, and check out our Code of Conduct.











Roberto Singer is a new contributor. Be nice, and check out our Code of Conduct.














Thanks for contributing an answer to Physics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f473667%2fhow-do-you-solve-the-twins-paradox%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Are there any AGPL-style licences that require source code modifications to be public? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Force derivative works to be publicAre there any GPL like licenses for Apple App Store?Do you violate the GPL if you provide source code that cannot be compiled?GPL - is it distribution to use libraries in an appliance loaned to customers?Distributing App for free which uses GPL'ed codeModifications of server software under GPL, with web/CLI interfaceDoes using an AGPLv3-licensed library prevent me from dual-licensing my own source code?Can I publish only select code under GPLv3 from a private project?Is there published precedent regarding the scope of covered work that uses AGPL software?If MIT licensed code links to GPL licensed code what should be the license of the resulting binary program?If I use a public API endpoint that has its source code licensed under AGPL in my app, do I need to disclose my source?

2013 GY136 Descoberta | Órbita | Referências Menu de navegação«List Of Centaurs and Scattered-Disk Objects»«List of Known Trans-Neptunian Objects»

Metrô de Los Teques Índice Linhas | Estações | Ver também | Referências Ligações externas | Menu de navegação«INSTITUCIÓN»«Mapa de rutas»originalMetrô de Los TequesC.A. Metro Los Teques |Alcaldía de Guaicaipuro – Sitio OficialGobernacion de Mirandaeeeeeee