Proof by mathematical induction with the problem 40(2n)! ≥ 30^n Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Proof by Induction (concerning $3^nge1+2n$)Mathematical Induction with InequalitiesProve by using Mathematical induction (sum of the first $n$ odd numbers is $n^2$)Stuck in Induction Inequality: $2^n>3n^2$prove inequality by induction — Discrete mathProve by induction $n! > n^2$Use mathematical induction to prove the following $n! < n^n$Mathematical induction by inequalityStuck On A Proof By InductionProve by induction, for all positive integers $n$, that $n!ge2^n-1$

What is the "studentd" process?

Trying to understand entropy as a novice in thermodynamics

Sally's older brother

In musical terms, what properties are varied by the human voice to produce different words / syllables?

Resize vertical bars (absolute-value symbols)

Why not send Voyager 3 and 4 following up the paths taken by Voyager 1 and 2 to re-transmit signals of later as they fly away from Earth?

"klopfte jemand" or "jemand klopfte"?

What does Turing mean by this statement?

As a dual citizen, my US passport will expire one day after traveling to the US. Will this work?

Did any compiler fully use 80-bit floating point?

How can I prevent/balance waiting and turtling as a response to cooldown mechanics

Co-worker has annoying ringtone

Why is std::move not [[nodiscard]] in C++20?

Is it possible for SQL statements to execute concurrently within a single session in SQL Server?

I can't produce songs

Why do early math courses focus on the cross sections of a cone and not on other 3D objects?

Why is it faster to reheat something than it is to cook it?

How many morphisms from 1 to 1+1 can there be?

Delete free apps from library

How do living politicians protect their readily obtainable signatures from misuse?

Google .dev domain strangely redirects to https

Found this skink in my tomato plant bucket. Is he trapped? Or could he leave if he wanted?

Putting class ranking in CV, but against dept guidelines

Asymptotics question



Proof by mathematical induction with the problem 40(2n)! ≥ 30^n



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Proof by Induction (concerning $3^nge1+2n$)Mathematical Induction with InequalitiesProve by using Mathematical induction (sum of the first $n$ odd numbers is $n^2$)Stuck in Induction Inequality: $2^n>3n^2$prove inequality by induction — Discrete mathProve by induction $n! > n^2$Use mathematical induction to prove the following $n! < n^n$Mathematical induction by inequalityStuck On A Proof By InductionProve by induction, for all positive integers $n$, that $n!ge2^n-1$










1












$begingroup$


I want to start by saying that I have for less trouble handling a non-inequality induction problem. I really don't understand the steps to take to get to the desired end product with these inequality induction proofs. That being said, I feel like I just wrote a mess on my paper that leads me nowhere. Here's my proof so far for the mathematical induction of $40(2n)!≥30^n$, where n ≥ 1



Let P(n) be the statement $40(2n)!≥30^n$ where n ≥ 1.



Basis Step: (n = 1) $LHS = 40 * 2! = 80$ and $RHS = 30^1 = 30$



$80 ≥ 30$



Inductive Step: Assume $P(k)$ is true for $k = 1$. Our goal is to show $P(k+1)$ is true by showing $40(2(k+1))!≥30^k+1$ for $k ≥ 1$.



(Beyond this step I have no clue how to alter the LHS factorial or the RHS exponent in such a way to benefit me. Below is my work so far)



LHS: (I tried to multiply $(2k+2)(2k+1)$ to both sides, but then I didn't see how that would help)$40(2k)!≥30^k = (2k)!*40≥30^k = (2k+2)(2k+1)(2k)!*40≥30^k*(2k+2)(2k+1)$



RHS: $40(2(k+1))!≥30^k+1=(2k+2)!*40≥30^k+1=(2k+2)(2k+1)(2k)!*40≥30^k+1$ $=(2k+2)(2k+1)(2k)!*40≥30*30^k$



(I then assumed the inductive hypothesis and placed $40(2k)!≥30^k$ in the middle to get...)



$(2k+2)(2k+1)(2k)!*40≥40(2k)!≥30^k≥30*30^k$



At this point, I've got nothing. I know that $30^k≥30*30^k$ makes no sense, but I don't know where to move $30*30^k$ since I can't assume that $40(2k)!≥30*30^k$. I don't have any clue how I can manipulate either side to help me.










share|cite|improve this question









$endgroup$
















    1












    $begingroup$


    I want to start by saying that I have for less trouble handling a non-inequality induction problem. I really don't understand the steps to take to get to the desired end product with these inequality induction proofs. That being said, I feel like I just wrote a mess on my paper that leads me nowhere. Here's my proof so far for the mathematical induction of $40(2n)!≥30^n$, where n ≥ 1



    Let P(n) be the statement $40(2n)!≥30^n$ where n ≥ 1.



    Basis Step: (n = 1) $LHS = 40 * 2! = 80$ and $RHS = 30^1 = 30$



    $80 ≥ 30$



    Inductive Step: Assume $P(k)$ is true for $k = 1$. Our goal is to show $P(k+1)$ is true by showing $40(2(k+1))!≥30^k+1$ for $k ≥ 1$.



    (Beyond this step I have no clue how to alter the LHS factorial or the RHS exponent in such a way to benefit me. Below is my work so far)



    LHS: (I tried to multiply $(2k+2)(2k+1)$ to both sides, but then I didn't see how that would help)$40(2k)!≥30^k = (2k)!*40≥30^k = (2k+2)(2k+1)(2k)!*40≥30^k*(2k+2)(2k+1)$



    RHS: $40(2(k+1))!≥30^k+1=(2k+2)!*40≥30^k+1=(2k+2)(2k+1)(2k)!*40≥30^k+1$ $=(2k+2)(2k+1)(2k)!*40≥30*30^k$



    (I then assumed the inductive hypothesis and placed $40(2k)!≥30^k$ in the middle to get...)



    $(2k+2)(2k+1)(2k)!*40≥40(2k)!≥30^k≥30*30^k$



    At this point, I've got nothing. I know that $30^k≥30*30^k$ makes no sense, but I don't know where to move $30*30^k$ since I can't assume that $40(2k)!≥30*30^k$. I don't have any clue how I can manipulate either side to help me.










    share|cite|improve this question









    $endgroup$














      1












      1








      1





      $begingroup$


      I want to start by saying that I have for less trouble handling a non-inequality induction problem. I really don't understand the steps to take to get to the desired end product with these inequality induction proofs. That being said, I feel like I just wrote a mess on my paper that leads me nowhere. Here's my proof so far for the mathematical induction of $40(2n)!≥30^n$, where n ≥ 1



      Let P(n) be the statement $40(2n)!≥30^n$ where n ≥ 1.



      Basis Step: (n = 1) $LHS = 40 * 2! = 80$ and $RHS = 30^1 = 30$



      $80 ≥ 30$



      Inductive Step: Assume $P(k)$ is true for $k = 1$. Our goal is to show $P(k+1)$ is true by showing $40(2(k+1))!≥30^k+1$ for $k ≥ 1$.



      (Beyond this step I have no clue how to alter the LHS factorial or the RHS exponent in such a way to benefit me. Below is my work so far)



      LHS: (I tried to multiply $(2k+2)(2k+1)$ to both sides, but then I didn't see how that would help)$40(2k)!≥30^k = (2k)!*40≥30^k = (2k+2)(2k+1)(2k)!*40≥30^k*(2k+2)(2k+1)$



      RHS: $40(2(k+1))!≥30^k+1=(2k+2)!*40≥30^k+1=(2k+2)(2k+1)(2k)!*40≥30^k+1$ $=(2k+2)(2k+1)(2k)!*40≥30*30^k$



      (I then assumed the inductive hypothesis and placed $40(2k)!≥30^k$ in the middle to get...)



      $(2k+2)(2k+1)(2k)!*40≥40(2k)!≥30^k≥30*30^k$



      At this point, I've got nothing. I know that $30^k≥30*30^k$ makes no sense, but I don't know where to move $30*30^k$ since I can't assume that $40(2k)!≥30*30^k$. I don't have any clue how I can manipulate either side to help me.










      share|cite|improve this question









      $endgroup$




      I want to start by saying that I have for less trouble handling a non-inequality induction problem. I really don't understand the steps to take to get to the desired end product with these inequality induction proofs. That being said, I feel like I just wrote a mess on my paper that leads me nowhere. Here's my proof so far for the mathematical induction of $40(2n)!≥30^n$, where n ≥ 1



      Let P(n) be the statement $40(2n)!≥30^n$ where n ≥ 1.



      Basis Step: (n = 1) $LHS = 40 * 2! = 80$ and $RHS = 30^1 = 30$



      $80 ≥ 30$



      Inductive Step: Assume $P(k)$ is true for $k = 1$. Our goal is to show $P(k+1)$ is true by showing $40(2(k+1))!≥30^k+1$ for $k ≥ 1$.



      (Beyond this step I have no clue how to alter the LHS factorial or the RHS exponent in such a way to benefit me. Below is my work so far)



      LHS: (I tried to multiply $(2k+2)(2k+1)$ to both sides, but then I didn't see how that would help)$40(2k)!≥30^k = (2k)!*40≥30^k = (2k+2)(2k+1)(2k)!*40≥30^k*(2k+2)(2k+1)$



      RHS: $40(2(k+1))!≥30^k+1=(2k+2)!*40≥30^k+1=(2k+2)(2k+1)(2k)!*40≥30^k+1$ $=(2k+2)(2k+1)(2k)!*40≥30*30^k$



      (I then assumed the inductive hypothesis and placed $40(2k)!≥30^k$ in the middle to get...)



      $(2k+2)(2k+1)(2k)!*40≥40(2k)!≥30^k≥30*30^k$



      At this point, I've got nothing. I know that $30^k≥30*30^k$ makes no sense, but I don't know where to move $30*30^k$ since I can't assume that $40(2k)!≥30*30^k$. I don't have any clue how I can manipulate either side to help me.







      inequality induction






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 1 hour ago









      Nick SabiaNick Sabia

      566




      566




















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          For $k ge 2$, $(2k+1)(2k+2) ge 30$. Hence if $P(k)$ is true for $k=1$ and $k=2$,



          $$P(k+1) = 40(2k+2)! = 40(2k)! (2k+1)(2k+2)$$
          $$ge 30^k (2k+1)(2k+2)quadquadquad (since 40(2k)! >= 30^k by P(k))$$
          $$ ge 30^k cdot 30 forall k ge 2$$
          $$ ge 30^k+1$$



          So you need to verify the proposition for $k=2$ and proceed with the induction.






          share|cite|improve this answer









          $endgroup$













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3195436%2fproof-by-mathematical-induction-with-the-problem-402n-%25e2%2589%25a5-30n%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            For $k ge 2$, $(2k+1)(2k+2) ge 30$. Hence if $P(k)$ is true for $k=1$ and $k=2$,



            $$P(k+1) = 40(2k+2)! = 40(2k)! (2k+1)(2k+2)$$
            $$ge 30^k (2k+1)(2k+2)quadquadquad (since 40(2k)! >= 30^k by P(k))$$
            $$ ge 30^k cdot 30 forall k ge 2$$
            $$ ge 30^k+1$$



            So you need to verify the proposition for $k=2$ and proceed with the induction.






            share|cite|improve this answer









            $endgroup$

















              3












              $begingroup$

              For $k ge 2$, $(2k+1)(2k+2) ge 30$. Hence if $P(k)$ is true for $k=1$ and $k=2$,



              $$P(k+1) = 40(2k+2)! = 40(2k)! (2k+1)(2k+2)$$
              $$ge 30^k (2k+1)(2k+2)quadquadquad (since 40(2k)! >= 30^k by P(k))$$
              $$ ge 30^k cdot 30 forall k ge 2$$
              $$ ge 30^k+1$$



              So you need to verify the proposition for $k=2$ and proceed with the induction.






              share|cite|improve this answer









              $endgroup$















                3












                3








                3





                $begingroup$

                For $k ge 2$, $(2k+1)(2k+2) ge 30$. Hence if $P(k)$ is true for $k=1$ and $k=2$,



                $$P(k+1) = 40(2k+2)! = 40(2k)! (2k+1)(2k+2)$$
                $$ge 30^k (2k+1)(2k+2)quadquadquad (since 40(2k)! >= 30^k by P(k))$$
                $$ ge 30^k cdot 30 forall k ge 2$$
                $$ ge 30^k+1$$



                So you need to verify the proposition for $k=2$ and proceed with the induction.






                share|cite|improve this answer









                $endgroup$



                For $k ge 2$, $(2k+1)(2k+2) ge 30$. Hence if $P(k)$ is true for $k=1$ and $k=2$,



                $$P(k+1) = 40(2k+2)! = 40(2k)! (2k+1)(2k+2)$$
                $$ge 30^k (2k+1)(2k+2)quadquadquad (since 40(2k)! >= 30^k by P(k))$$
                $$ ge 30^k cdot 30 forall k ge 2$$
                $$ ge 30^k+1$$



                So you need to verify the proposition for $k=2$ and proceed with the induction.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 1 hour ago









                user1952500user1952500

                1,123812




                1,123812



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3195436%2fproof-by-mathematical-induction-with-the-problem-402n-%25e2%2589%25a5-30n%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Are there any AGPL-style licences that require source code modifications to be public? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Force derivative works to be publicAre there any GPL like licenses for Apple App Store?Do you violate the GPL if you provide source code that cannot be compiled?GPL - is it distribution to use libraries in an appliance loaned to customers?Distributing App for free which uses GPL'ed codeModifications of server software under GPL, with web/CLI interfaceDoes using an AGPLv3-licensed library prevent me from dual-licensing my own source code?Can I publish only select code under GPLv3 from a private project?Is there published precedent regarding the scope of covered work that uses AGPL software?If MIT licensed code links to GPL licensed code what should be the license of the resulting binary program?If I use a public API endpoint that has its source code licensed under AGPL in my app, do I need to disclose my source?

                    2013 GY136 Descoberta | Órbita | Referências Menu de navegação«List Of Centaurs and Scattered-Disk Objects»«List of Known Trans-Neptunian Objects»

                    Mortes em março de 2019 Referências Menu de navegação«Zhores Alferov, Nobel de Física bielorrusso, morre aos 88 anos - Ciência»«Fallece Rafael Torija, o bispo emérito de Ciudad Real»«Peter Hurford dies at 88»«Keith Flint, vocalista do The Prodigy, morre aos 49 anos»«Luke Perry, ator de 'Barrados no baile' e 'Riverdale', morre aos 52 anos»«Former Rangers and Scotland captain Eric Caldow dies, aged 84»«Morreu, aos 61 anos, a antiga lenda do wrestling King Kong Bundy»«Fallece el actor y director teatral Abraham Stavans»«In Memoriam Guillaume Faye»«Sidney Sheinberg, a Force Behind Universal and Spielberg, Is Dead at 84»«Carmine Persico, Colombo Crime Family Boss, Is Dead at 85»«Dirigent Michael Gielen gestorben»«Ciclista tricampeã mundial e prata na Rio 2016 é encontrada morta em casa aos 23 anos»«Pagan Community Notes: Raven Grimassi dies, Indianapolis pop-up event cancelled, Circle Sanctuary announces new podcast, and more!»«Hal Blaine, Wrecking Crew Drummer, Dies at 90»«Morre Coutinho, que editou dupla lendária com Pelé no Santos»«Cantor Demétrius, ídolo da Jovem Guarda, morre em SP»«Ex-presidente do Vasco, Eurico Miranda morre no Rio de Janeiro»«Bronze no Mundial de basquete de 1971, Laís Elena morre aos 76 anos»«Diretor de Corridas da F1, Charlie Whiting morre aos 66 anos às vésperas do GP da Austrália»«Morreu o cardeal Danneels, da Bélgica»«Morreu o cartoonista Augusto Cid»«Morreu a atriz Maria Isabel de Lizandra, de "Vale Tudo" e novelas da Tupi»«WS Merwin, prize-winning poet of nature, dies at 91»«Atriz Márcia Real morre em São Paulo aos 88 anos»«Mauritanie: décès de l'ancien président Mohamed Mahmoud ould Louly»«Morreu Dick Dale, o rei da surf guitar e de "Pulp Fiction"»«Falleció Víctor Genes»«João Carlos Marinho, autor de 'O Gênio do Crime', morre em SP»«Legendary Horror Director and SFX Artist John Carl Buechler Dies at 66»«Morre em Salvador a religiosa Makota Valdina»«مرگ بازیکن‌ سابق نساجی بر اثر سقوط سنگ در مازندران»«Domingos Oliveira morre no Rio»«Morre Airton Ravagniani, ex-São Paulo, Fla, Vasco, Grêmio e Sport - Notícias»«Morre o escritor Flavio Moreira da Costa»«Larry Cohen, Writer-Director of 'It's Alive' and 'Hell Up in Harlem,' Dies at 77»«Scott Walker, experimental singer-songwriter, dead at 76»«Joseph Pilato, Day of the Dead Star and Horror Favorite, Dies at 70»«Sheffield United set to pay tribute to legendary goalkeeper Ted Burgin who has died at 91»«Morre Rafael Henzel, sobrevivente de acidente aéreo da Chapecoense»«Morre Valery Bykovsky, um dos primeiros cosmonautas da União Soviética»«Agnès Varda, cineasta da Nouvelle Vague, morre aos 90 anos»«Agnès Varda, cineasta francesa, morre aos 90 anos»«Tania Mallet, James Bond Actress and Helen Mirren's Cousin, Dies at 77»e