How do I implement a file system driver driver in Linux?2019 Community Moderator ElectionHow does one install a camera driver from a c file, and what is this driver doing?what is the difference between Device driver and kernel moduledoes a user program always use system calls to access a device driverDevice files and drivers of a disk, partition, and filesystem?How to find the driver (module) associated with SATA device on Linux?Where does a device file come from?How is a wifi driver exposed to userspace?Locating kernel module from device node major, minor numberinteracting with kernel modules without giving users sudo access?How to check if a given driver kernel module supports a given device?

Freedom of speech and where it applies

Is XSS in canonical link possible?

Do Legal Documents Require Signing In Standard Pen Colors?

Has Darkwing Duck ever met Scrooge McDuck?

Drawing ramified coverings with tikz

List of people who lose a child in תנ"ך

Gibbs free energy in standard state vs. equilibrium

Drawing a topological "handle" with Tikz

How to color a curve

Greco-Roman egalitarianism

Is it possible to use .desktop files to open local pdf files on specific pages with a browser?

How does the reference system of the Majjhima Nikaya work?

Why is Arduino resetting while driving motors?

What is the difference between "Do you interest" and "...interested in" something?

Is it possible to have a strip of cold climate in the middle of a planet?

Did arcade monitors have same pixel aspect ratio as TV sets?

Is there a conventional notation or name for the slip angle?

why `nmap 192.168.1.97` returns less services than `nmap 127.0.0.1`?

Translation of Scottish 16th century church stained glass

Can I use my Chinese passport to enter China after I acquired another citizenship?

Is camera lens focus an exact point or a range?

If a character with the Alert feat rolls a crit fail on their Perception check, are they surprised?

Can someone explain how this makes sense electrically?

Folder comparison



How do I implement a file system driver driver in Linux?



2019 Community Moderator ElectionHow does one install a camera driver from a c file, and what is this driver doing?what is the difference between Device driver and kernel moduledoes a user program always use system calls to access a device driverDevice files and drivers of a disk, partition, and filesystem?How to find the driver (module) associated with SATA device on Linux?Where does a device file come from?How is a wifi driver exposed to userspace?Locating kernel module from device node major, minor numberinteracting with kernel modules without giving users sudo access?How to check if a given driver kernel module supports a given device?










5















Assume that I have invented a new file system, and now I want to create a file system driver for it.



How would I implement this file system driver, is this done using a kernel module?



And how can the file system driver access the hard disk, should the file system driver contain code to access the hard disk, or does Linux contain a device driver to access the hard disk that is used by all the file system drivers?










share|improve this question









New contributor




user343344 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




















  • Title doesn't match with body, also this is asking for tutorial.

    – 炸鱼薯条德里克
    9 hours ago















5















Assume that I have invented a new file system, and now I want to create a file system driver for it.



How would I implement this file system driver, is this done using a kernel module?



And how can the file system driver access the hard disk, should the file system driver contain code to access the hard disk, or does Linux contain a device driver to access the hard disk that is used by all the file system drivers?










share|improve this question









New contributor




user343344 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




















  • Title doesn't match with body, also this is asking for tutorial.

    – 炸鱼薯条德里克
    9 hours ago













5












5








5


1






Assume that I have invented a new file system, and now I want to create a file system driver for it.



How would I implement this file system driver, is this done using a kernel module?



And how can the file system driver access the hard disk, should the file system driver contain code to access the hard disk, or does Linux contain a device driver to access the hard disk that is used by all the file system drivers?










share|improve this question









New contributor




user343344 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.












Assume that I have invented a new file system, and now I want to create a file system driver for it.



How would I implement this file system driver, is this done using a kernel module?



And how can the file system driver access the hard disk, should the file system driver contain code to access the hard disk, or does Linux contain a device driver to access the hard disk that is used by all the file system drivers?







linux filesystems drivers






share|improve this question









New contributor




user343344 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question









New contributor




user343344 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question








edited 18 mins ago









Gilles

544k12811011619




544k12811011619






New contributor




user343344 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 10 hours ago









user343344user343344

261




261




New contributor




user343344 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





user343344 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






user343344 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.












  • Title doesn't match with body, also this is asking for tutorial.

    – 炸鱼薯条德里克
    9 hours ago

















  • Title doesn't match with body, also this is asking for tutorial.

    – 炸鱼薯条德里克
    9 hours ago
















Title doesn't match with body, also this is asking for tutorial.

– 炸鱼薯条德里克
9 hours ago





Title doesn't match with body, also this is asking for tutorial.

– 炸鱼薯条德里克
9 hours ago










4 Answers
4






active

oldest

votes


















9














Yes, filesystems in Linux can be implemented as kernel modules. But there is also the FUSE (Filesystem in USErspace) interface, which can allow a regular user-space process to act as a filesystem driver. If you're prototyping a new filesystem, implementing it first using the FUSE interface could make the testing and development easier. Once you have the internals of the filesystem worked out in FUSE form, you might then start implementing a performance-optimized kernel module version of it.



Here's some basic information on implementing a filesystem within kernel space. It's rather old (from 1996!), but that should at least give you a basic idea for the kind of things you'll need to do.



If you choose to go to the FUSE route, here's libfuse, the reference implementation of the userspace side of the FUSE interface.



Filesystem driver as a kernel module



Basically, the initialization function of your filesystem driver module needs just to call a register_filesystem() function, and give it as a parameter a structure that includes a function pointer that identifies the function in your filesystem driver that will be used as the first step in identifying your filesystem type and mounting it. Nothing more happens at that stage.



When a filesystem is being mounted, and either the filesystem type is specified to match your driver, or filesystem type auto-detection is being performed, the kernel's Virtual FileSystem (VFS for short) layer will call that function. It basically says "Here's a pointer to a kernel-level representation of a standard Linux block device. Take a look at it, see if it's something you can handle, and then tell me what you can do with it."



At that point, your driver is supposed to read whatever it needs to verify it's the right driver for the filesystem, and then return a structure that includes pointers to further functions your driver can do with that particular filesystem. Or if the filesystem driver does not recognize the data on the disk, it is supposed to return an appropriate error result, and then VFS will either report a failure to userspace or - if filesystem type auto-detection is being performed - will ask another filesystem driver to try.



The other drivers in the kernel will provide the standard block device interface, so the filesystem driver won't have to implement hardware support. Basically, the filesystem driver can read and write disk blocks using standard kernel-level functions with the device pointer given to it.



The VFS layer expects the filesystem driver to make a number of standard functions available to the VFS layer; a few of these are mandatory in order for the VFS layer to do anything meaningful with the filesystem, others are optional and you can just return a NULL in place of a pointer to such an optional function.






share|improve this answer

























  • This is a pretty good answer though to fully answer the question as stated you'd also need to say a bit about the functionality the block device layer provides for the file system layer to build upon.

    – kasperd
    2 hours ago











  • I sort of alluded to that with the "here's a pointer to a standard block device" bit, but good point; I expanded on that.

    – telcoM
    1 hour ago


















2














Yes a kernel driver can manage a file-system .



The best solution to mock up , prototype a file-system is to use FUSE . And after you can think about transform it into a kernel driver .



Wikipedia =>
https://en.wikipedia.org/wiki/Filesystem_in_Userspace



Source => https://github.com/libfuse/libfuse



a tutorial => https://developer.ibm.com/articles/l-fuse/






share|improve this answer






























    0














    Yes this would typically be done using a kernel driver that can either be loaded as a kernel module or compiled into the kernel.



    You can check out similar filesystem drivers and how they work here.



    These drivers likely use internal kernel functions to access storage devices as blocks of bytes but you could also use blockdevices as exposed by drivers in the block devices and character devices folders.






    share|improve this answer








    New contributor




    Erik is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.



























      0














      You can use fuse, to make a user-land file-system, or write a kernel module.
      It is easier to do with fuse, as you have a choice of languages, and won't crash the kernel (and therefore the whole system).



      Kernel modules can be faster, but the first rule of optimisation is: Don't do it until you have tested working code. The second is like it: Don't do it until you have evidence that it is too slow. And the third: Don't keep it unless you have evidence that it makes it faster/smaller.



      And yes the kernel already has drivers for the hardware, you don't re-implement them.






      share|improve this answer























      • There are major downsides to FUSE other than performance: it's hard to use it for your root filesystem. (Maybe possible with an initrd, but the FUSE binary couldn't be freed after booting because it would still be executing from the ramdisk.)

        – Peter Cordes
        3 hours ago










      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "106"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );






      user343344 is a new contributor. Be nice, and check out our Code of Conduct.









      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2funix.stackexchange.com%2fquestions%2f508314%2fhow-do-i-implement-a-file-system-driver-driver-in-linux%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      4 Answers
      4






      active

      oldest

      votes








      4 Answers
      4






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      9














      Yes, filesystems in Linux can be implemented as kernel modules. But there is also the FUSE (Filesystem in USErspace) interface, which can allow a regular user-space process to act as a filesystem driver. If you're prototyping a new filesystem, implementing it first using the FUSE interface could make the testing and development easier. Once you have the internals of the filesystem worked out in FUSE form, you might then start implementing a performance-optimized kernel module version of it.



      Here's some basic information on implementing a filesystem within kernel space. It's rather old (from 1996!), but that should at least give you a basic idea for the kind of things you'll need to do.



      If you choose to go to the FUSE route, here's libfuse, the reference implementation of the userspace side of the FUSE interface.



      Filesystem driver as a kernel module



      Basically, the initialization function of your filesystem driver module needs just to call a register_filesystem() function, and give it as a parameter a structure that includes a function pointer that identifies the function in your filesystem driver that will be used as the first step in identifying your filesystem type and mounting it. Nothing more happens at that stage.



      When a filesystem is being mounted, and either the filesystem type is specified to match your driver, or filesystem type auto-detection is being performed, the kernel's Virtual FileSystem (VFS for short) layer will call that function. It basically says "Here's a pointer to a kernel-level representation of a standard Linux block device. Take a look at it, see if it's something you can handle, and then tell me what you can do with it."



      At that point, your driver is supposed to read whatever it needs to verify it's the right driver for the filesystem, and then return a structure that includes pointers to further functions your driver can do with that particular filesystem. Or if the filesystem driver does not recognize the data on the disk, it is supposed to return an appropriate error result, and then VFS will either report a failure to userspace or - if filesystem type auto-detection is being performed - will ask another filesystem driver to try.



      The other drivers in the kernel will provide the standard block device interface, so the filesystem driver won't have to implement hardware support. Basically, the filesystem driver can read and write disk blocks using standard kernel-level functions with the device pointer given to it.



      The VFS layer expects the filesystem driver to make a number of standard functions available to the VFS layer; a few of these are mandatory in order for the VFS layer to do anything meaningful with the filesystem, others are optional and you can just return a NULL in place of a pointer to such an optional function.






      share|improve this answer

























      • This is a pretty good answer though to fully answer the question as stated you'd also need to say a bit about the functionality the block device layer provides for the file system layer to build upon.

        – kasperd
        2 hours ago











      • I sort of alluded to that with the "here's a pointer to a standard block device" bit, but good point; I expanded on that.

        – telcoM
        1 hour ago















      9














      Yes, filesystems in Linux can be implemented as kernel modules. But there is also the FUSE (Filesystem in USErspace) interface, which can allow a regular user-space process to act as a filesystem driver. If you're prototyping a new filesystem, implementing it first using the FUSE interface could make the testing and development easier. Once you have the internals of the filesystem worked out in FUSE form, you might then start implementing a performance-optimized kernel module version of it.



      Here's some basic information on implementing a filesystem within kernel space. It's rather old (from 1996!), but that should at least give you a basic idea for the kind of things you'll need to do.



      If you choose to go to the FUSE route, here's libfuse, the reference implementation of the userspace side of the FUSE interface.



      Filesystem driver as a kernel module



      Basically, the initialization function of your filesystem driver module needs just to call a register_filesystem() function, and give it as a parameter a structure that includes a function pointer that identifies the function in your filesystem driver that will be used as the first step in identifying your filesystem type and mounting it. Nothing more happens at that stage.



      When a filesystem is being mounted, and either the filesystem type is specified to match your driver, or filesystem type auto-detection is being performed, the kernel's Virtual FileSystem (VFS for short) layer will call that function. It basically says "Here's a pointer to a kernel-level representation of a standard Linux block device. Take a look at it, see if it's something you can handle, and then tell me what you can do with it."



      At that point, your driver is supposed to read whatever it needs to verify it's the right driver for the filesystem, and then return a structure that includes pointers to further functions your driver can do with that particular filesystem. Or if the filesystem driver does not recognize the data on the disk, it is supposed to return an appropriate error result, and then VFS will either report a failure to userspace or - if filesystem type auto-detection is being performed - will ask another filesystem driver to try.



      The other drivers in the kernel will provide the standard block device interface, so the filesystem driver won't have to implement hardware support. Basically, the filesystem driver can read and write disk blocks using standard kernel-level functions with the device pointer given to it.



      The VFS layer expects the filesystem driver to make a number of standard functions available to the VFS layer; a few of these are mandatory in order for the VFS layer to do anything meaningful with the filesystem, others are optional and you can just return a NULL in place of a pointer to such an optional function.






      share|improve this answer

























      • This is a pretty good answer though to fully answer the question as stated you'd also need to say a bit about the functionality the block device layer provides for the file system layer to build upon.

        – kasperd
        2 hours ago











      • I sort of alluded to that with the "here's a pointer to a standard block device" bit, but good point; I expanded on that.

        – telcoM
        1 hour ago













      9












      9








      9







      Yes, filesystems in Linux can be implemented as kernel modules. But there is also the FUSE (Filesystem in USErspace) interface, which can allow a regular user-space process to act as a filesystem driver. If you're prototyping a new filesystem, implementing it first using the FUSE interface could make the testing and development easier. Once you have the internals of the filesystem worked out in FUSE form, you might then start implementing a performance-optimized kernel module version of it.



      Here's some basic information on implementing a filesystem within kernel space. It's rather old (from 1996!), but that should at least give you a basic idea for the kind of things you'll need to do.



      If you choose to go to the FUSE route, here's libfuse, the reference implementation of the userspace side of the FUSE interface.



      Filesystem driver as a kernel module



      Basically, the initialization function of your filesystem driver module needs just to call a register_filesystem() function, and give it as a parameter a structure that includes a function pointer that identifies the function in your filesystem driver that will be used as the first step in identifying your filesystem type and mounting it. Nothing more happens at that stage.



      When a filesystem is being mounted, and either the filesystem type is specified to match your driver, or filesystem type auto-detection is being performed, the kernel's Virtual FileSystem (VFS for short) layer will call that function. It basically says "Here's a pointer to a kernel-level representation of a standard Linux block device. Take a look at it, see if it's something you can handle, and then tell me what you can do with it."



      At that point, your driver is supposed to read whatever it needs to verify it's the right driver for the filesystem, and then return a structure that includes pointers to further functions your driver can do with that particular filesystem. Or if the filesystem driver does not recognize the data on the disk, it is supposed to return an appropriate error result, and then VFS will either report a failure to userspace or - if filesystem type auto-detection is being performed - will ask another filesystem driver to try.



      The other drivers in the kernel will provide the standard block device interface, so the filesystem driver won't have to implement hardware support. Basically, the filesystem driver can read and write disk blocks using standard kernel-level functions with the device pointer given to it.



      The VFS layer expects the filesystem driver to make a number of standard functions available to the VFS layer; a few of these are mandatory in order for the VFS layer to do anything meaningful with the filesystem, others are optional and you can just return a NULL in place of a pointer to such an optional function.






      share|improve this answer















      Yes, filesystems in Linux can be implemented as kernel modules. But there is also the FUSE (Filesystem in USErspace) interface, which can allow a regular user-space process to act as a filesystem driver. If you're prototyping a new filesystem, implementing it first using the FUSE interface could make the testing and development easier. Once you have the internals of the filesystem worked out in FUSE form, you might then start implementing a performance-optimized kernel module version of it.



      Here's some basic information on implementing a filesystem within kernel space. It's rather old (from 1996!), but that should at least give you a basic idea for the kind of things you'll need to do.



      If you choose to go to the FUSE route, here's libfuse, the reference implementation of the userspace side of the FUSE interface.



      Filesystem driver as a kernel module



      Basically, the initialization function of your filesystem driver module needs just to call a register_filesystem() function, and give it as a parameter a structure that includes a function pointer that identifies the function in your filesystem driver that will be used as the first step in identifying your filesystem type and mounting it. Nothing more happens at that stage.



      When a filesystem is being mounted, and either the filesystem type is specified to match your driver, or filesystem type auto-detection is being performed, the kernel's Virtual FileSystem (VFS for short) layer will call that function. It basically says "Here's a pointer to a kernel-level representation of a standard Linux block device. Take a look at it, see if it's something you can handle, and then tell me what you can do with it."



      At that point, your driver is supposed to read whatever it needs to verify it's the right driver for the filesystem, and then return a structure that includes pointers to further functions your driver can do with that particular filesystem. Or if the filesystem driver does not recognize the data on the disk, it is supposed to return an appropriate error result, and then VFS will either report a failure to userspace or - if filesystem type auto-detection is being performed - will ask another filesystem driver to try.



      The other drivers in the kernel will provide the standard block device interface, so the filesystem driver won't have to implement hardware support. Basically, the filesystem driver can read and write disk blocks using standard kernel-level functions with the device pointer given to it.



      The VFS layer expects the filesystem driver to make a number of standard functions available to the VFS layer; a few of these are mandatory in order for the VFS layer to do anything meaningful with the filesystem, others are optional and you can just return a NULL in place of a pointer to such an optional function.







      share|improve this answer














      share|improve this answer



      share|improve this answer








      edited 1 hour ago

























      answered 8 hours ago









      telcoMtelcoM

      19.8k12449




      19.8k12449












      • This is a pretty good answer though to fully answer the question as stated you'd also need to say a bit about the functionality the block device layer provides for the file system layer to build upon.

        – kasperd
        2 hours ago











      • I sort of alluded to that with the "here's a pointer to a standard block device" bit, but good point; I expanded on that.

        – telcoM
        1 hour ago

















      • This is a pretty good answer though to fully answer the question as stated you'd also need to say a bit about the functionality the block device layer provides for the file system layer to build upon.

        – kasperd
        2 hours ago











      • I sort of alluded to that with the "here's a pointer to a standard block device" bit, but good point; I expanded on that.

        – telcoM
        1 hour ago
















      This is a pretty good answer though to fully answer the question as stated you'd also need to say a bit about the functionality the block device layer provides for the file system layer to build upon.

      – kasperd
      2 hours ago





      This is a pretty good answer though to fully answer the question as stated you'd also need to say a bit about the functionality the block device layer provides for the file system layer to build upon.

      – kasperd
      2 hours ago













      I sort of alluded to that with the "here's a pointer to a standard block device" bit, but good point; I expanded on that.

      – telcoM
      1 hour ago





      I sort of alluded to that with the "here's a pointer to a standard block device" bit, but good point; I expanded on that.

      – telcoM
      1 hour ago













      2














      Yes a kernel driver can manage a file-system .



      The best solution to mock up , prototype a file-system is to use FUSE . And after you can think about transform it into a kernel driver .



      Wikipedia =>
      https://en.wikipedia.org/wiki/Filesystem_in_Userspace



      Source => https://github.com/libfuse/libfuse



      a tutorial => https://developer.ibm.com/articles/l-fuse/






      share|improve this answer



























        2














        Yes a kernel driver can manage a file-system .



        The best solution to mock up , prototype a file-system is to use FUSE . And after you can think about transform it into a kernel driver .



        Wikipedia =>
        https://en.wikipedia.org/wiki/Filesystem_in_Userspace



        Source => https://github.com/libfuse/libfuse



        a tutorial => https://developer.ibm.com/articles/l-fuse/






        share|improve this answer

























          2












          2








          2







          Yes a kernel driver can manage a file-system .



          The best solution to mock up , prototype a file-system is to use FUSE . And after you can think about transform it into a kernel driver .



          Wikipedia =>
          https://en.wikipedia.org/wiki/Filesystem_in_Userspace



          Source => https://github.com/libfuse/libfuse



          a tutorial => https://developer.ibm.com/articles/l-fuse/






          share|improve this answer













          Yes a kernel driver can manage a file-system .



          The best solution to mock up , prototype a file-system is to use FUSE . And after you can think about transform it into a kernel driver .



          Wikipedia =>
          https://en.wikipedia.org/wiki/Filesystem_in_Userspace



          Source => https://github.com/libfuse/libfuse



          a tutorial => https://developer.ibm.com/articles/l-fuse/







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered 9 hours ago









          EchoMike444EchoMike444

          1,0305




          1,0305





















              0














              Yes this would typically be done using a kernel driver that can either be loaded as a kernel module or compiled into the kernel.



              You can check out similar filesystem drivers and how they work here.



              These drivers likely use internal kernel functions to access storage devices as blocks of bytes but you could also use blockdevices as exposed by drivers in the block devices and character devices folders.






              share|improve this answer








              New contributor




              Erik is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
              Check out our Code of Conduct.
























                0














                Yes this would typically be done using a kernel driver that can either be loaded as a kernel module or compiled into the kernel.



                You can check out similar filesystem drivers and how they work here.



                These drivers likely use internal kernel functions to access storage devices as blocks of bytes but you could also use blockdevices as exposed by drivers in the block devices and character devices folders.






                share|improve this answer








                New contributor




                Erik is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                Check out our Code of Conduct.






















                  0












                  0








                  0







                  Yes this would typically be done using a kernel driver that can either be loaded as a kernel module or compiled into the kernel.



                  You can check out similar filesystem drivers and how they work here.



                  These drivers likely use internal kernel functions to access storage devices as blocks of bytes but you could also use blockdevices as exposed by drivers in the block devices and character devices folders.






                  share|improve this answer








                  New contributor




                  Erik is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.










                  Yes this would typically be done using a kernel driver that can either be loaded as a kernel module or compiled into the kernel.



                  You can check out similar filesystem drivers and how they work here.



                  These drivers likely use internal kernel functions to access storage devices as blocks of bytes but you could also use blockdevices as exposed by drivers in the block devices and character devices folders.







                  share|improve this answer








                  New contributor




                  Erik is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.









                  share|improve this answer



                  share|improve this answer






                  New contributor




                  Erik is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.









                  answered 9 hours ago









                  ErikErik

                  31




                  31




                  New contributor




                  Erik is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.





                  New contributor





                  Erik is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.






                  Erik is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.





















                      0














                      You can use fuse, to make a user-land file-system, or write a kernel module.
                      It is easier to do with fuse, as you have a choice of languages, and won't crash the kernel (and therefore the whole system).



                      Kernel modules can be faster, but the first rule of optimisation is: Don't do it until you have tested working code. The second is like it: Don't do it until you have evidence that it is too slow. And the third: Don't keep it unless you have evidence that it makes it faster/smaller.



                      And yes the kernel already has drivers for the hardware, you don't re-implement them.






                      share|improve this answer























                      • There are major downsides to FUSE other than performance: it's hard to use it for your root filesystem. (Maybe possible with an initrd, but the FUSE binary couldn't be freed after booting because it would still be executing from the ramdisk.)

                        – Peter Cordes
                        3 hours ago















                      0














                      You can use fuse, to make a user-land file-system, or write a kernel module.
                      It is easier to do with fuse, as you have a choice of languages, and won't crash the kernel (and therefore the whole system).



                      Kernel modules can be faster, but the first rule of optimisation is: Don't do it until you have tested working code. The second is like it: Don't do it until you have evidence that it is too slow. And the third: Don't keep it unless you have evidence that it makes it faster/smaller.



                      And yes the kernel already has drivers for the hardware, you don't re-implement them.






                      share|improve this answer























                      • There are major downsides to FUSE other than performance: it's hard to use it for your root filesystem. (Maybe possible with an initrd, but the FUSE binary couldn't be freed after booting because it would still be executing from the ramdisk.)

                        – Peter Cordes
                        3 hours ago













                      0












                      0








                      0







                      You can use fuse, to make a user-land file-system, or write a kernel module.
                      It is easier to do with fuse, as you have a choice of languages, and won't crash the kernel (and therefore the whole system).



                      Kernel modules can be faster, but the first rule of optimisation is: Don't do it until you have tested working code. The second is like it: Don't do it until you have evidence that it is too slow. And the third: Don't keep it unless you have evidence that it makes it faster/smaller.



                      And yes the kernel already has drivers for the hardware, you don't re-implement them.






                      share|improve this answer













                      You can use fuse, to make a user-land file-system, or write a kernel module.
                      It is easier to do with fuse, as you have a choice of languages, and won't crash the kernel (and therefore the whole system).



                      Kernel modules can be faster, but the first rule of optimisation is: Don't do it until you have tested working code. The second is like it: Don't do it until you have evidence that it is too slow. And the third: Don't keep it unless you have evidence that it makes it faster/smaller.



                      And yes the kernel already has drivers for the hardware, you don't re-implement them.







                      share|improve this answer












                      share|improve this answer



                      share|improve this answer










                      answered 9 hours ago









                      ctrl-alt-delorctrl-alt-delor

                      12.1k42561




                      12.1k42561












                      • There are major downsides to FUSE other than performance: it's hard to use it for your root filesystem. (Maybe possible with an initrd, but the FUSE binary couldn't be freed after booting because it would still be executing from the ramdisk.)

                        – Peter Cordes
                        3 hours ago

















                      • There are major downsides to FUSE other than performance: it's hard to use it for your root filesystem. (Maybe possible with an initrd, but the FUSE binary couldn't be freed after booting because it would still be executing from the ramdisk.)

                        – Peter Cordes
                        3 hours ago
















                      There are major downsides to FUSE other than performance: it's hard to use it for your root filesystem. (Maybe possible with an initrd, but the FUSE binary couldn't be freed after booting because it would still be executing from the ramdisk.)

                      – Peter Cordes
                      3 hours ago





                      There are major downsides to FUSE other than performance: it's hard to use it for your root filesystem. (Maybe possible with an initrd, but the FUSE binary couldn't be freed after booting because it would still be executing from the ramdisk.)

                      – Peter Cordes
                      3 hours ago










                      user343344 is a new contributor. Be nice, and check out our Code of Conduct.









                      draft saved

                      draft discarded


















                      user343344 is a new contributor. Be nice, and check out our Code of Conduct.












                      user343344 is a new contributor. Be nice, and check out our Code of Conduct.











                      user343344 is a new contributor. Be nice, and check out our Code of Conduct.














                      Thanks for contributing an answer to Unix & Linux Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2funix.stackexchange.com%2fquestions%2f508314%2fhow-do-i-implement-a-file-system-driver-driver-in-linux%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Are there any AGPL-style licences that require source code modifications to be public? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Force derivative works to be publicAre there any GPL like licenses for Apple App Store?Do you violate the GPL if you provide source code that cannot be compiled?GPL - is it distribution to use libraries in an appliance loaned to customers?Distributing App for free which uses GPL'ed codeModifications of server software under GPL, with web/CLI interfaceDoes using an AGPLv3-licensed library prevent me from dual-licensing my own source code?Can I publish only select code under GPLv3 from a private project?Is there published precedent regarding the scope of covered work that uses AGPL software?If MIT licensed code links to GPL licensed code what should be the license of the resulting binary program?If I use a public API endpoint that has its source code licensed under AGPL in my app, do I need to disclose my source?

                      2013 GY136 Descoberta | Órbita | Referências Menu de navegação«List Of Centaurs and Scattered-Disk Objects»«List of Known Trans-Neptunian Objects»

                      Metrô de Los Teques Índice Linhas | Estações | Ver também | Referências Ligações externas | Menu de navegação«INSTITUCIÓN»«Mapa de rutas»originalMetrô de Los TequesC.A. Metro Los Teques |Alcaldía de Guaicaipuro – Sitio OficialGobernacion de Mirandaeeeeeee