Proof of Lemma: Every nonzero integer can be written as a product of primesComplete induction proof that every $n > 1$ can be written as a product of primesWhat's wrong with this proof of the infinity of primes?Induction Proof - Primes and Euclid's LemmaEuclid's proof of Infinitude of Primes: If a prime divides an integer, why would it have to divide 1?Proof or disproof that every integer can be written as the sum of a prime and a square.Prove two subsequent primes cannot be written as a product of two primesProof by well ordering: Every positive integer greater than one can be factored as a product of primes.Difficult Q: Show that every integer $n$ can be written in the form $n = a^2 b$….product of distinct primesWhy is the proof not right ? Every positive integer can be written as a product of primes?Proof by well ordering: Every positive integer greater than one can be factored as a product of primes. Part II

Greco-Roman egalitarianism

Does the Mind Blank spell prevent the target from being frightened?

Divine apple island

Should I install hardwood flooring or cabinets first?

Could solar power be utilized and substitute coal in the 19th Century

Gibbs free energy in standard state vs. equilibrium

Why is Arduino resetting while driving motors?

How can "mimic phobia" be cured or prevented?

How will losing mobility of one hand affect my career as a programmer?

How to decide convergence of Integrals

How to color a curve

Can I sign legal documents with a smiley face?

Create all possible words using a set or letters

Is a model fitted to data or is data fitted to a model?

Why do IPv6 unique local addresses have to have a /48 prefix?

Open a doc from terminal, but not by its name

Global amount of publications over time

How much character growth crosses the line into breaking the character

Customize circled numbers

Fuse symbol on toroidal transformer

What does this horizontal bar at the first measure mean?

Is it improper etiquette to ask your opponent what his/her rating is before the game?

Can the Supreme Court overturn an impeachment?

Did arcade monitors have same pixel aspect ratio as TV sets?



Proof of Lemma: Every nonzero integer can be written as a product of primes


Complete induction proof that every $n > 1$ can be written as a product of primesWhat's wrong with this proof of the infinity of primes?Induction Proof - Primes and Euclid's LemmaEuclid's proof of Infinitude of Primes: If a prime divides an integer, why would it have to divide 1?Proof or disproof that every integer can be written as the sum of a prime and a square.Prove two subsequent primes cannot be written as a product of two primesProof by well ordering: Every positive integer greater than one can be factored as a product of primes.Difficult Q: Show that every integer $n$ can be written in the form $n = a^2 b$….product of distinct primesWhy is the proof not right ? Every positive integer can be written as a product of primes?Proof by well ordering: Every positive integer greater than one can be factored as a product of primes. Part II













2












$begingroup$


I'm new to number theory. This might be kind of a silly question, so I'm sorry if it is.



I encountered the classic lemma about every nonzero integer being the product of primes in a textbook about number theory. In this textbook there is also a proof for it provided, and I'd like to understand why it is that the proof actually works.



The proof is as follows:




Assume, for contradiction, that there is an integer $N$ that cannot be written as a product of primes. Let $N$ be the smallest positive integer with this property. Since $N$ cannot itself be prime we must have $N = mn$, where $1 < m$, $n < N$. However, since $m$, $n$ are positive and smaller than $N$ they must each be a product of primes. But then so is $N = mn$. This is a contradiction.




I feel like this proof kind of presupposes the lemma. I think this line of reasoning could be strengthened using induction, and I've seen other proofs of this lemma that use induction. Can someone help me out? What am I missing and why do I think that this proof of the lemma is circular?










share|cite|improve this question









New contributor




Alena Gusakov is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 2




    $begingroup$
    That argument is by induction. the result is easy to check for small numbers, so assume it holds up to $N-1$. Then $N$ is either prime, in which case we are done, or it factors as $atimes b$ with $1<a≤b<N-1$ and you can apply the inductive hypothesis to $a,b$. Same argument.
    $endgroup$
    – lulu
    1 hour ago






  • 1




    $begingroup$
    There is nothing missing in this proof. It is just fine. And why “two primes”?
    $endgroup$
    – José Carlos Santos
    1 hour ago










  • $begingroup$
    @JoséCarlosSantos Typo. Fixed.
    $endgroup$
    – Alena Gusakov
    1 hour ago










  • $begingroup$
    It's not circular, but it could be a lot clearer. It's not strictly necessary to say $n > 1$, since $m$ is positive and $mn$ is also positive.
    $endgroup$
    – Robert Soupe
    52 mins ago















2












$begingroup$


I'm new to number theory. This might be kind of a silly question, so I'm sorry if it is.



I encountered the classic lemma about every nonzero integer being the product of primes in a textbook about number theory. In this textbook there is also a proof for it provided, and I'd like to understand why it is that the proof actually works.



The proof is as follows:




Assume, for contradiction, that there is an integer $N$ that cannot be written as a product of primes. Let $N$ be the smallest positive integer with this property. Since $N$ cannot itself be prime we must have $N = mn$, where $1 < m$, $n < N$. However, since $m$, $n$ are positive and smaller than $N$ they must each be a product of primes. But then so is $N = mn$. This is a contradiction.




I feel like this proof kind of presupposes the lemma. I think this line of reasoning could be strengthened using induction, and I've seen other proofs of this lemma that use induction. Can someone help me out? What am I missing and why do I think that this proof of the lemma is circular?










share|cite|improve this question









New contributor




Alena Gusakov is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 2




    $begingroup$
    That argument is by induction. the result is easy to check for small numbers, so assume it holds up to $N-1$. Then $N$ is either prime, in which case we are done, or it factors as $atimes b$ with $1<a≤b<N-1$ and you can apply the inductive hypothesis to $a,b$. Same argument.
    $endgroup$
    – lulu
    1 hour ago






  • 1




    $begingroup$
    There is nothing missing in this proof. It is just fine. And why “two primes”?
    $endgroup$
    – José Carlos Santos
    1 hour ago










  • $begingroup$
    @JoséCarlosSantos Typo. Fixed.
    $endgroup$
    – Alena Gusakov
    1 hour ago










  • $begingroup$
    It's not circular, but it could be a lot clearer. It's not strictly necessary to say $n > 1$, since $m$ is positive and $mn$ is also positive.
    $endgroup$
    – Robert Soupe
    52 mins ago













2












2








2





$begingroup$


I'm new to number theory. This might be kind of a silly question, so I'm sorry if it is.



I encountered the classic lemma about every nonzero integer being the product of primes in a textbook about number theory. In this textbook there is also a proof for it provided, and I'd like to understand why it is that the proof actually works.



The proof is as follows:




Assume, for contradiction, that there is an integer $N$ that cannot be written as a product of primes. Let $N$ be the smallest positive integer with this property. Since $N$ cannot itself be prime we must have $N = mn$, where $1 < m$, $n < N$. However, since $m$, $n$ are positive and smaller than $N$ they must each be a product of primes. But then so is $N = mn$. This is a contradiction.




I feel like this proof kind of presupposes the lemma. I think this line of reasoning could be strengthened using induction, and I've seen other proofs of this lemma that use induction. Can someone help me out? What am I missing and why do I think that this proof of the lemma is circular?










share|cite|improve this question









New contributor




Alena Gusakov is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




I'm new to number theory. This might be kind of a silly question, so I'm sorry if it is.



I encountered the classic lemma about every nonzero integer being the product of primes in a textbook about number theory. In this textbook there is also a proof for it provided, and I'd like to understand why it is that the proof actually works.



The proof is as follows:




Assume, for contradiction, that there is an integer $N$ that cannot be written as a product of primes. Let $N$ be the smallest positive integer with this property. Since $N$ cannot itself be prime we must have $N = mn$, where $1 < m$, $n < N$. However, since $m$, $n$ are positive and smaller than $N$ they must each be a product of primes. But then so is $N = mn$. This is a contradiction.




I feel like this proof kind of presupposes the lemma. I think this line of reasoning could be strengthened using induction, and I've seen other proofs of this lemma that use induction. Can someone help me out? What am I missing and why do I think that this proof of the lemma is circular?







elementary-number-theory prime-numbers proof-explanation integers






share|cite|improve this question









New contributor




Alena Gusakov is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




Alena Gusakov is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 1 hour ago









Robert Soupe

11.4k21950




11.4k21950






New contributor




Alena Gusakov is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 1 hour ago









Alena GusakovAlena Gusakov

112




112




New contributor




Alena Gusakov is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Alena Gusakov is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Alena Gusakov is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 2




    $begingroup$
    That argument is by induction. the result is easy to check for small numbers, so assume it holds up to $N-1$. Then $N$ is either prime, in which case we are done, or it factors as $atimes b$ with $1<a≤b<N-1$ and you can apply the inductive hypothesis to $a,b$. Same argument.
    $endgroup$
    – lulu
    1 hour ago






  • 1




    $begingroup$
    There is nothing missing in this proof. It is just fine. And why “two primes”?
    $endgroup$
    – José Carlos Santos
    1 hour ago










  • $begingroup$
    @JoséCarlosSantos Typo. Fixed.
    $endgroup$
    – Alena Gusakov
    1 hour ago










  • $begingroup$
    It's not circular, but it could be a lot clearer. It's not strictly necessary to say $n > 1$, since $m$ is positive and $mn$ is also positive.
    $endgroup$
    – Robert Soupe
    52 mins ago












  • 2




    $begingroup$
    That argument is by induction. the result is easy to check for small numbers, so assume it holds up to $N-1$. Then $N$ is either prime, in which case we are done, or it factors as $atimes b$ with $1<a≤b<N-1$ and you can apply the inductive hypothesis to $a,b$. Same argument.
    $endgroup$
    – lulu
    1 hour ago






  • 1




    $begingroup$
    There is nothing missing in this proof. It is just fine. And why “two primes”?
    $endgroup$
    – José Carlos Santos
    1 hour ago










  • $begingroup$
    @JoséCarlosSantos Typo. Fixed.
    $endgroup$
    – Alena Gusakov
    1 hour ago










  • $begingroup$
    It's not circular, but it could be a lot clearer. It's not strictly necessary to say $n > 1$, since $m$ is positive and $mn$ is also positive.
    $endgroup$
    – Robert Soupe
    52 mins ago







2




2




$begingroup$
That argument is by induction. the result is easy to check for small numbers, so assume it holds up to $N-1$. Then $N$ is either prime, in which case we are done, or it factors as $atimes b$ with $1<a≤b<N-1$ and you can apply the inductive hypothesis to $a,b$. Same argument.
$endgroup$
– lulu
1 hour ago




$begingroup$
That argument is by induction. the result is easy to check for small numbers, so assume it holds up to $N-1$. Then $N$ is either prime, in which case we are done, or it factors as $atimes b$ with $1<a≤b<N-1$ and you can apply the inductive hypothesis to $a,b$. Same argument.
$endgroup$
– lulu
1 hour ago




1




1




$begingroup$
There is nothing missing in this proof. It is just fine. And why “two primes”?
$endgroup$
– José Carlos Santos
1 hour ago




$begingroup$
There is nothing missing in this proof. It is just fine. And why “two primes”?
$endgroup$
– José Carlos Santos
1 hour ago












$begingroup$
@JoséCarlosSantos Typo. Fixed.
$endgroup$
– Alena Gusakov
1 hour ago




$begingroup$
@JoséCarlosSantos Typo. Fixed.
$endgroup$
– Alena Gusakov
1 hour ago












$begingroup$
It's not circular, but it could be a lot clearer. It's not strictly necessary to say $n > 1$, since $m$ is positive and $mn$ is also positive.
$endgroup$
– Robert Soupe
52 mins ago




$begingroup$
It's not circular, but it could be a lot clearer. It's not strictly necessary to say $n > 1$, since $m$ is positive and $mn$ is also positive.
$endgroup$
– Robert Soupe
52 mins ago










2 Answers
2






active

oldest

votes


















2












$begingroup$

Although the proof by contradiction is correct, your feeling of unease is fine, because the direct proof by induction is so much clearer:




Take an integer $N$. If $N$ is prime, there is nothing to prove. Otherwise, we must have $N = mn$, where $1 < m, n < N$. By induction, since $m, n$ are smaller than $N$, they must each be a product of primes. Then so is $N = mn$. Done.







share|cite|improve this answer









$endgroup$




















    1












    $begingroup$

    The proof is not circular, the key is in the second sentence: Let N be the smallest positive integer with this property.



    We are allowed to say a least $N$ exists because of the well-ordering principle.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      I don't know if it's because of the well-ordering principle ... that's like using a hammer to slice through butter. One does not need the full strength of the AOC to prove such a simple statement.
      $endgroup$
      – Don Thousand
      1 hour ago










    • $begingroup$
      @Don What's AOC? I presume you're not talking about Alexandria Ocasio-Cortez.
      $endgroup$
      – Robert Soupe
      57 mins ago










    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );






    Alena Gusakov is a new contributor. Be nice, and check out our Code of Conduct.









    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3161147%2fproof-of-lemma-every-nonzero-integer-can-be-written-as-a-product-of-primes%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    Although the proof by contradiction is correct, your feeling of unease is fine, because the direct proof by induction is so much clearer:




    Take an integer $N$. If $N$ is prime, there is nothing to prove. Otherwise, we must have $N = mn$, where $1 < m, n < N$. By induction, since $m, n$ are smaller than $N$, they must each be a product of primes. Then so is $N = mn$. Done.







    share|cite|improve this answer









    $endgroup$

















      2












      $begingroup$

      Although the proof by contradiction is correct, your feeling of unease is fine, because the direct proof by induction is so much clearer:




      Take an integer $N$. If $N$ is prime, there is nothing to prove. Otherwise, we must have $N = mn$, where $1 < m, n < N$. By induction, since $m, n$ are smaller than $N$, they must each be a product of primes. Then so is $N = mn$. Done.







      share|cite|improve this answer









      $endgroup$















        2












        2








        2





        $begingroup$

        Although the proof by contradiction is correct, your feeling of unease is fine, because the direct proof by induction is so much clearer:




        Take an integer $N$. If $N$ is prime, there is nothing to prove. Otherwise, we must have $N = mn$, where $1 < m, n < N$. By induction, since $m, n$ are smaller than $N$, they must each be a product of primes. Then so is $N = mn$. Done.







        share|cite|improve this answer









        $endgroup$



        Although the proof by contradiction is correct, your feeling of unease is fine, because the direct proof by induction is so much clearer:




        Take an integer $N$. If $N$ is prime, there is nothing to prove. Otherwise, we must have $N = mn$, where $1 < m, n < N$. By induction, since $m, n$ are smaller than $N$, they must each be a product of primes. Then so is $N = mn$. Done.








        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 1 hour ago









        lhflhf

        166k11172402




        166k11172402





















            1












            $begingroup$

            The proof is not circular, the key is in the second sentence: Let N be the smallest positive integer with this property.



            We are allowed to say a least $N$ exists because of the well-ordering principle.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              I don't know if it's because of the well-ordering principle ... that's like using a hammer to slice through butter. One does not need the full strength of the AOC to prove such a simple statement.
              $endgroup$
              – Don Thousand
              1 hour ago










            • $begingroup$
              @Don What's AOC? I presume you're not talking about Alexandria Ocasio-Cortez.
              $endgroup$
              – Robert Soupe
              57 mins ago















            1












            $begingroup$

            The proof is not circular, the key is in the second sentence: Let N be the smallest positive integer with this property.



            We are allowed to say a least $N$ exists because of the well-ordering principle.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              I don't know if it's because of the well-ordering principle ... that's like using a hammer to slice through butter. One does not need the full strength of the AOC to prove such a simple statement.
              $endgroup$
              – Don Thousand
              1 hour ago










            • $begingroup$
              @Don What's AOC? I presume you're not talking about Alexandria Ocasio-Cortez.
              $endgroup$
              – Robert Soupe
              57 mins ago













            1












            1








            1





            $begingroup$

            The proof is not circular, the key is in the second sentence: Let N be the smallest positive integer with this property.



            We are allowed to say a least $N$ exists because of the well-ordering principle.






            share|cite|improve this answer









            $endgroup$



            The proof is not circular, the key is in the second sentence: Let N be the smallest positive integer with this property.



            We are allowed to say a least $N$ exists because of the well-ordering principle.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 1 hour ago









            Edgar Jaramillo RodriguezEdgar Jaramillo Rodriguez

            965




            965











            • $begingroup$
              I don't know if it's because of the well-ordering principle ... that's like using a hammer to slice through butter. One does not need the full strength of the AOC to prove such a simple statement.
              $endgroup$
              – Don Thousand
              1 hour ago










            • $begingroup$
              @Don What's AOC? I presume you're not talking about Alexandria Ocasio-Cortez.
              $endgroup$
              – Robert Soupe
              57 mins ago
















            • $begingroup$
              I don't know if it's because of the well-ordering principle ... that's like using a hammer to slice through butter. One does not need the full strength of the AOC to prove such a simple statement.
              $endgroup$
              – Don Thousand
              1 hour ago










            • $begingroup$
              @Don What's AOC? I presume you're not talking about Alexandria Ocasio-Cortez.
              $endgroup$
              – Robert Soupe
              57 mins ago















            $begingroup$
            I don't know if it's because of the well-ordering principle ... that's like using a hammer to slice through butter. One does not need the full strength of the AOC to prove such a simple statement.
            $endgroup$
            – Don Thousand
            1 hour ago




            $begingroup$
            I don't know if it's because of the well-ordering principle ... that's like using a hammer to slice through butter. One does not need the full strength of the AOC to prove such a simple statement.
            $endgroup$
            – Don Thousand
            1 hour ago












            $begingroup$
            @Don What's AOC? I presume you're not talking about Alexandria Ocasio-Cortez.
            $endgroup$
            – Robert Soupe
            57 mins ago




            $begingroup$
            @Don What's AOC? I presume you're not talking about Alexandria Ocasio-Cortez.
            $endgroup$
            – Robert Soupe
            57 mins ago










            Alena Gusakov is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            Alena Gusakov is a new contributor. Be nice, and check out our Code of Conduct.












            Alena Gusakov is a new contributor. Be nice, and check out our Code of Conduct.











            Alena Gusakov is a new contributor. Be nice, and check out our Code of Conduct.














            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3161147%2fproof-of-lemma-every-nonzero-integer-can-be-written-as-a-product-of-primes%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Are there any AGPL-style licences that require source code modifications to be public? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Force derivative works to be publicAre there any GPL like licenses for Apple App Store?Do you violate the GPL if you provide source code that cannot be compiled?GPL - is it distribution to use libraries in an appliance loaned to customers?Distributing App for free which uses GPL'ed codeModifications of server software under GPL, with web/CLI interfaceDoes using an AGPLv3-licensed library prevent me from dual-licensing my own source code?Can I publish only select code under GPLv3 from a private project?Is there published precedent regarding the scope of covered work that uses AGPL software?If MIT licensed code links to GPL licensed code what should be the license of the resulting binary program?If I use a public API endpoint that has its source code licensed under AGPL in my app, do I need to disclose my source?

            2013 GY136 Descoberta | Órbita | Referências Menu de navegação«List Of Centaurs and Scattered-Disk Objects»«List of Known Trans-Neptunian Objects»

            Mortes em março de 2019 Referências Menu de navegação«Zhores Alferov, Nobel de Física bielorrusso, morre aos 88 anos - Ciência»«Fallece Rafael Torija, o bispo emérito de Ciudad Real»«Peter Hurford dies at 88»«Keith Flint, vocalista do The Prodigy, morre aos 49 anos»«Luke Perry, ator de 'Barrados no baile' e 'Riverdale', morre aos 52 anos»«Former Rangers and Scotland captain Eric Caldow dies, aged 84»«Morreu, aos 61 anos, a antiga lenda do wrestling King Kong Bundy»«Fallece el actor y director teatral Abraham Stavans»«In Memoriam Guillaume Faye»«Sidney Sheinberg, a Force Behind Universal and Spielberg, Is Dead at 84»«Carmine Persico, Colombo Crime Family Boss, Is Dead at 85»«Dirigent Michael Gielen gestorben»«Ciclista tricampeã mundial e prata na Rio 2016 é encontrada morta em casa aos 23 anos»«Pagan Community Notes: Raven Grimassi dies, Indianapolis pop-up event cancelled, Circle Sanctuary announces new podcast, and more!»«Hal Blaine, Wrecking Crew Drummer, Dies at 90»«Morre Coutinho, que editou dupla lendária com Pelé no Santos»«Cantor Demétrius, ídolo da Jovem Guarda, morre em SP»«Ex-presidente do Vasco, Eurico Miranda morre no Rio de Janeiro»«Bronze no Mundial de basquete de 1971, Laís Elena morre aos 76 anos»«Diretor de Corridas da F1, Charlie Whiting morre aos 66 anos às vésperas do GP da Austrália»«Morreu o cardeal Danneels, da Bélgica»«Morreu o cartoonista Augusto Cid»«Morreu a atriz Maria Isabel de Lizandra, de "Vale Tudo" e novelas da Tupi»«WS Merwin, prize-winning poet of nature, dies at 91»«Atriz Márcia Real morre em São Paulo aos 88 anos»«Mauritanie: décès de l'ancien président Mohamed Mahmoud ould Louly»«Morreu Dick Dale, o rei da surf guitar e de "Pulp Fiction"»«Falleció Víctor Genes»«João Carlos Marinho, autor de 'O Gênio do Crime', morre em SP»«Legendary Horror Director and SFX Artist John Carl Buechler Dies at 66»«Morre em Salvador a religiosa Makota Valdina»«مرگ بازیکن‌ سابق نساجی بر اثر سقوط سنگ در مازندران»«Domingos Oliveira morre no Rio»«Morre Airton Ravagniani, ex-São Paulo, Fla, Vasco, Grêmio e Sport - Notícias»«Morre o escritor Flavio Moreira da Costa»«Larry Cohen, Writer-Director of 'It's Alive' and 'Hell Up in Harlem,' Dies at 77»«Scott Walker, experimental singer-songwriter, dead at 76»«Joseph Pilato, Day of the Dead Star and Horror Favorite, Dies at 70»«Sheffield United set to pay tribute to legendary goalkeeper Ted Burgin who has died at 91»«Morre Rafael Henzel, sobrevivente de acidente aéreo da Chapecoense»«Morre Valery Bykovsky, um dos primeiros cosmonautas da União Soviética»«Agnès Varda, cineasta da Nouvelle Vague, morre aos 90 anos»«Agnès Varda, cineasta francesa, morre aos 90 anos»«Tania Mallet, James Bond Actress and Helen Mirren's Cousin, Dies at 77»e