Why does the integral domain “being trapped between a finite field extension” implies that it is a field?Linear map $f:Vrightarrow V$ injective $Longleftrightarrow$ surjectiveDoes this morphism necessarily give rise to a finite extension of residue fields?Points lying over a closed point in a separable extension of the base field are rationnalWhat kind of points are there in a finite type $k$-scheme?Quotient of ring is flat gives an identity of idealsWhen is the tensor product of a separable field extension with itself a domain?Why is the residue field of a $k$-scheme an extension of $k$?An example of normalization of schemeFinite fiber property and integral extension.Characterize integral extension of rings by maximal idealsMaximal ideal of $K[x_1,cdots,x_n]$ such that the quotient field equals to $K$

What does this horizontal bar at the first measure mean?

List of people who lose a child in תנ"ך

How to color a curve

What is this type of notehead called?

Should I stop contributing to retirement accounts?

Why does Async/Await work properly when the loop is inside the async function and not the other way around?

Is it possible to use .desktop files to open local pdf files on specific pages with a browser?

Engineer refusing to file/disclose patents

Why do IPv6 unique local addresses have to have a /48 prefix?

Indicating multiple different modes of speech (fantasy language or telepathy)

Why does the integral domain "being trapped between a finite field extension" implies that it is a field?

Query about absorption line spectra

Confusion on Parallelogram

We have a love-hate relationship

Transformation of random variables and joint distributions

Proving a function is onto where f(x)=|x|.

How can Trident be so inexpensive? Will it orbit Triton or just do a (slow) flyby?

How do ground effect vehicles perform turns?

Reply 'no position' while the job posting is still there

Is XSS in canonical link possible?

If a character with the Alert feat rolls a crit fail on their Perception check, are they surprised?

What is the gram­mat­i­cal term for “‑ed” words like these?

Journal losing indexing services

Divine apple island



Why does the integral domain “being trapped between a finite field extension” implies that it is a field?


Linear map $f:Vrightarrow V$ injective $Longleftrightarrow$ surjectiveDoes this morphism necessarily give rise to a finite extension of residue fields?Points lying over a closed point in a separable extension of the base field are rationnalWhat kind of points are there in a finite type $k$-scheme?Quotient of ring is flat gives an identity of idealsWhen is the tensor product of a separable field extension with itself a domain?Why is the residue field of a $k$-scheme an extension of $k$?An example of normalization of schemeFinite fiber property and integral extension.Characterize integral extension of rings by maximal idealsMaximal ideal of $K[x_1,cdots,x_n]$ such that the quotient field equals to $K$













3












$begingroup$


The following is an exercise from Qing Liu's Algebraic Geometry and Arithmetic Curves.




Exercise 1.2.



Let ϕ : A → B be a homomorphism of finitely generated algebras over a field. Show that the image of a closed point under Spec ϕ is a closed point.




The following is the solution from Cihan Bahran. http://www-users.math.umn.edu/~bahra004/alg-geo/liu-soln.pdf.




Write $k$ for the underlying field. Let’s parse the statement. A closed point in $operatornameSpec B$ means a maximal ideal $n$ of $B$. And $operatornameSpec(ϕ)(n) = ϕ^−1(n)$. So we want to show that $p := ϕ−1(n)$ is a maximal ideal in $A$. First of all, $p$ is definitely a prime ideal of $A$ and $ϕ$ descends to an injective $k$-algebra homomorphism $ψ : A/p to B/n$. But the map $k to B/n$ defines a finite field extension of $k$ by Corollary 1.12. So the integral domain $A/p$ is trapped between a finite field extension. Such domains are necessarily fields, thus $p$ is maximal in $A$.




In the second last sentence, the writer says that the integral domain $A/p$ is trapped between a finite field extension. I don't exactly know what it means, but I think it means that there are two injective ring homomorphisms $f:kto A/p$ and $g:A/pto B/n$ such that $gcirc f$ makes $B/n$ a finite field extension of $k$. But why does it imply that $A/p$ is a field?










share|cite|improve this question









$endgroup$
















    3












    $begingroup$


    The following is an exercise from Qing Liu's Algebraic Geometry and Arithmetic Curves.




    Exercise 1.2.



    Let ϕ : A → B be a homomorphism of finitely generated algebras over a field. Show that the image of a closed point under Spec ϕ is a closed point.




    The following is the solution from Cihan Bahran. http://www-users.math.umn.edu/~bahra004/alg-geo/liu-soln.pdf.




    Write $k$ for the underlying field. Let’s parse the statement. A closed point in $operatornameSpec B$ means a maximal ideal $n$ of $B$. And $operatornameSpec(ϕ)(n) = ϕ^−1(n)$. So we want to show that $p := ϕ−1(n)$ is a maximal ideal in $A$. First of all, $p$ is definitely a prime ideal of $A$ and $ϕ$ descends to an injective $k$-algebra homomorphism $ψ : A/p to B/n$. But the map $k to B/n$ defines a finite field extension of $k$ by Corollary 1.12. So the integral domain $A/p$ is trapped between a finite field extension. Such domains are necessarily fields, thus $p$ is maximal in $A$.




    In the second last sentence, the writer says that the integral domain $A/p$ is trapped between a finite field extension. I don't exactly know what it means, but I think it means that there are two injective ring homomorphisms $f:kto A/p$ and $g:A/pto B/n$ such that $gcirc f$ makes $B/n$ a finite field extension of $k$. But why does it imply that $A/p$ is a field?










    share|cite|improve this question









    $endgroup$














      3












      3








      3


      1



      $begingroup$


      The following is an exercise from Qing Liu's Algebraic Geometry and Arithmetic Curves.




      Exercise 1.2.



      Let ϕ : A → B be a homomorphism of finitely generated algebras over a field. Show that the image of a closed point under Spec ϕ is a closed point.




      The following is the solution from Cihan Bahran. http://www-users.math.umn.edu/~bahra004/alg-geo/liu-soln.pdf.




      Write $k$ for the underlying field. Let’s parse the statement. A closed point in $operatornameSpec B$ means a maximal ideal $n$ of $B$. And $operatornameSpec(ϕ)(n) = ϕ^−1(n)$. So we want to show that $p := ϕ−1(n)$ is a maximal ideal in $A$. First of all, $p$ is definitely a prime ideal of $A$ and $ϕ$ descends to an injective $k$-algebra homomorphism $ψ : A/p to B/n$. But the map $k to B/n$ defines a finite field extension of $k$ by Corollary 1.12. So the integral domain $A/p$ is trapped between a finite field extension. Such domains are necessarily fields, thus $p$ is maximal in $A$.




      In the second last sentence, the writer says that the integral domain $A/p$ is trapped between a finite field extension. I don't exactly know what it means, but I think it means that there are two injective ring homomorphisms $f:kto A/p$ and $g:A/pto B/n$ such that $gcirc f$ makes $B/n$ a finite field extension of $k$. But why does it imply that $A/p$ is a field?










      share|cite|improve this question









      $endgroup$




      The following is an exercise from Qing Liu's Algebraic Geometry and Arithmetic Curves.




      Exercise 1.2.



      Let ϕ : A → B be a homomorphism of finitely generated algebras over a field. Show that the image of a closed point under Spec ϕ is a closed point.




      The following is the solution from Cihan Bahran. http://www-users.math.umn.edu/~bahra004/alg-geo/liu-soln.pdf.




      Write $k$ for the underlying field. Let’s parse the statement. A closed point in $operatornameSpec B$ means a maximal ideal $n$ of $B$. And $operatornameSpec(ϕ)(n) = ϕ^−1(n)$. So we want to show that $p := ϕ−1(n)$ is a maximal ideal in $A$. First of all, $p$ is definitely a prime ideal of $A$ and $ϕ$ descends to an injective $k$-algebra homomorphism $ψ : A/p to B/n$. But the map $k to B/n$ defines a finite field extension of $k$ by Corollary 1.12. So the integral domain $A/p$ is trapped between a finite field extension. Such domains are necessarily fields, thus $p$ is maximal in $A$.




      In the second last sentence, the writer says that the integral domain $A/p$ is trapped between a finite field extension. I don't exactly know what it means, but I think it means that there are two injective ring homomorphisms $f:kto A/p$ and $g:A/pto B/n$ such that $gcirc f$ makes $B/n$ a finite field extension of $k$. But why does it imply that $A/p$ is a field?







      abstract-algebra algebraic-geometry commutative-algebra






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 1 hour ago









      zxcvzxcv

      1659




      1659




















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$


          Theorem 1. Let $K$ be a field. Let $R$ and $L$ be two $K$-algebras such that $L$ is a finite-dimensional $K$-vector space and $R$ is an integral domain. Let $g : R to L$ be an injective $K$-linear map. Then, $R$ is a field.




          Proof of Theorem 1. Since the $K$-linear map $g : R to L$ is injective, we have $dim R leq dim L$, where "$dim$" refers to the dimension of a $K$-vector space. But $dim L < infty$, since $L$ is finite-dimensional. Hence, $dim R leq dim L < infty$; thus, $R$ is a finite-dimensional $K$-vector space. Therefore, any injective $K$-linear map $f : R to R$ is an isomorphism of $K$-vector spaces (according to a well-known fact from linear algebra).



          Now, let $a in R$ be nonzero. Let $M_a$ denote the map $R to R, r mapsto ar$. This map $M_a : R to R$ is $K$-linear and has kernel $0$ (because every $r in R$ satisfying $ar = 0$ must satisfy $r = 0$ (since $R$ is an integral domain and $a$ is nonzero)); thus, it is injective. Hence, it is an isomorphism of $K$-vector spaces (since any injective $K$-linear map $f : R to R$ is an isomorphism of $K$-vector spaces). Thus, it is surjective. Therefore, there exists some $s in R$ such that $M_aleft(sright) = 1$. Consider this $s$. Now, the definition of $M_a$ yields $M_aleft(sright) = as$, so that $as = M_aleft(sright) = 1$. In other words, $s$ is a (multiplicative) inverse of $a$. Hence, $a$ has an inverse.



          We have thus proven that every nonzero $a in R$ has an inverse. In other words, the ring $R$ is an integral domain. This proves Theorem 1. $blacksquare$



          In your situation, you should apply Theorem 1 to $K = k$, $R = A/p$, $L = B/n$ and $g = psi$.






          share|cite|improve this answer









          $endgroup$




















            2












            $begingroup$

            Suppose $F$ is any field, $E$ is a finite extension field of $F$, and $D$ is an integral domain such that



            $F subset D subset E; tag 1$



            since



            $[E:F] = n < infty, tag 2$



            every element of $D$ is algebraic over $F$; thus



            $0 ne d in D tag 3$



            satisfies some



            $p(x) in F[x]; tag 4$



            that is,



            $p(d) = 0; tag 5$



            we may write



            $p(x) = displaystyle sum_0^deg p p_j x^j, ; p_j in F; tag 6$



            then



            $displaystyle sum_0^deg p p_j d^j = p(d) = 0; tag 7$



            furthermore, we may assume $p(x)$ is of minimal degree of all polynomials in $F[x]$ satisfied by $d$. In this case, we must have



            $p_0 ne 0; tag 8$



            if not, then



            $p(x) = displaystyle sum_1^deg p p_jx^j = x sum_1^deg p p_j x^j - 1; tag 9$



            thus



            $d displaystyle sum_1^deg p p_j d^j - 1 = 0, tag10$



            and via (4) this forces



            $displaystyle sum_1^deg p p_j d^j - 1 = 0, tag11$



            since $D$ is an integral domain; but this asserts that $d$ satisfies the polynomial



            $displaystyle sum_1^deg p p_ x^j - 1 in F[x] tag12$



            of degree $deg p - 1$, which contradicts the minimality of the degree of $p(x)$; therefore (8) binds and we may write



            $displaystyle sum_1^deg pp_j d^j = -p_0, tag13$



            or



            $d left( -p_0^-1displaystyle sum_1^deg p p_j d^j- 1 right ) = 1, tag14$



            which shows that



            $d^-1 = -p_0^-1displaystyle sum_1^deg p p_j d^j- 1 in D; tag15$



            since every $0 ne d in D$ has in iverse in $D$ by (15), $D$ is indeed a field.






            share|cite|improve this answer









            $endgroup$












              Your Answer





              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3161381%2fwhy-does-the-integral-domain-being-trapped-between-a-finite-field-extension-im%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3












              $begingroup$


              Theorem 1. Let $K$ be a field. Let $R$ and $L$ be two $K$-algebras such that $L$ is a finite-dimensional $K$-vector space and $R$ is an integral domain. Let $g : R to L$ be an injective $K$-linear map. Then, $R$ is a field.




              Proof of Theorem 1. Since the $K$-linear map $g : R to L$ is injective, we have $dim R leq dim L$, where "$dim$" refers to the dimension of a $K$-vector space. But $dim L < infty$, since $L$ is finite-dimensional. Hence, $dim R leq dim L < infty$; thus, $R$ is a finite-dimensional $K$-vector space. Therefore, any injective $K$-linear map $f : R to R$ is an isomorphism of $K$-vector spaces (according to a well-known fact from linear algebra).



              Now, let $a in R$ be nonzero. Let $M_a$ denote the map $R to R, r mapsto ar$. This map $M_a : R to R$ is $K$-linear and has kernel $0$ (because every $r in R$ satisfying $ar = 0$ must satisfy $r = 0$ (since $R$ is an integral domain and $a$ is nonzero)); thus, it is injective. Hence, it is an isomorphism of $K$-vector spaces (since any injective $K$-linear map $f : R to R$ is an isomorphism of $K$-vector spaces). Thus, it is surjective. Therefore, there exists some $s in R$ such that $M_aleft(sright) = 1$. Consider this $s$. Now, the definition of $M_a$ yields $M_aleft(sright) = as$, so that $as = M_aleft(sright) = 1$. In other words, $s$ is a (multiplicative) inverse of $a$. Hence, $a$ has an inverse.



              We have thus proven that every nonzero $a in R$ has an inverse. In other words, the ring $R$ is an integral domain. This proves Theorem 1. $blacksquare$



              In your situation, you should apply Theorem 1 to $K = k$, $R = A/p$, $L = B/n$ and $g = psi$.






              share|cite|improve this answer









              $endgroup$

















                3












                $begingroup$


                Theorem 1. Let $K$ be a field. Let $R$ and $L$ be two $K$-algebras such that $L$ is a finite-dimensional $K$-vector space and $R$ is an integral domain. Let $g : R to L$ be an injective $K$-linear map. Then, $R$ is a field.




                Proof of Theorem 1. Since the $K$-linear map $g : R to L$ is injective, we have $dim R leq dim L$, where "$dim$" refers to the dimension of a $K$-vector space. But $dim L < infty$, since $L$ is finite-dimensional. Hence, $dim R leq dim L < infty$; thus, $R$ is a finite-dimensional $K$-vector space. Therefore, any injective $K$-linear map $f : R to R$ is an isomorphism of $K$-vector spaces (according to a well-known fact from linear algebra).



                Now, let $a in R$ be nonzero. Let $M_a$ denote the map $R to R, r mapsto ar$. This map $M_a : R to R$ is $K$-linear and has kernel $0$ (because every $r in R$ satisfying $ar = 0$ must satisfy $r = 0$ (since $R$ is an integral domain and $a$ is nonzero)); thus, it is injective. Hence, it is an isomorphism of $K$-vector spaces (since any injective $K$-linear map $f : R to R$ is an isomorphism of $K$-vector spaces). Thus, it is surjective. Therefore, there exists some $s in R$ such that $M_aleft(sright) = 1$. Consider this $s$. Now, the definition of $M_a$ yields $M_aleft(sright) = as$, so that $as = M_aleft(sright) = 1$. In other words, $s$ is a (multiplicative) inverse of $a$. Hence, $a$ has an inverse.



                We have thus proven that every nonzero $a in R$ has an inverse. In other words, the ring $R$ is an integral domain. This proves Theorem 1. $blacksquare$



                In your situation, you should apply Theorem 1 to $K = k$, $R = A/p$, $L = B/n$ and $g = psi$.






                share|cite|improve this answer









                $endgroup$















                  3












                  3








                  3





                  $begingroup$


                  Theorem 1. Let $K$ be a field. Let $R$ and $L$ be two $K$-algebras such that $L$ is a finite-dimensional $K$-vector space and $R$ is an integral domain. Let $g : R to L$ be an injective $K$-linear map. Then, $R$ is a field.




                  Proof of Theorem 1. Since the $K$-linear map $g : R to L$ is injective, we have $dim R leq dim L$, where "$dim$" refers to the dimension of a $K$-vector space. But $dim L < infty$, since $L$ is finite-dimensional. Hence, $dim R leq dim L < infty$; thus, $R$ is a finite-dimensional $K$-vector space. Therefore, any injective $K$-linear map $f : R to R$ is an isomorphism of $K$-vector spaces (according to a well-known fact from linear algebra).



                  Now, let $a in R$ be nonzero. Let $M_a$ denote the map $R to R, r mapsto ar$. This map $M_a : R to R$ is $K$-linear and has kernel $0$ (because every $r in R$ satisfying $ar = 0$ must satisfy $r = 0$ (since $R$ is an integral domain and $a$ is nonzero)); thus, it is injective. Hence, it is an isomorphism of $K$-vector spaces (since any injective $K$-linear map $f : R to R$ is an isomorphism of $K$-vector spaces). Thus, it is surjective. Therefore, there exists some $s in R$ such that $M_aleft(sright) = 1$. Consider this $s$. Now, the definition of $M_a$ yields $M_aleft(sright) = as$, so that $as = M_aleft(sright) = 1$. In other words, $s$ is a (multiplicative) inverse of $a$. Hence, $a$ has an inverse.



                  We have thus proven that every nonzero $a in R$ has an inverse. In other words, the ring $R$ is an integral domain. This proves Theorem 1. $blacksquare$



                  In your situation, you should apply Theorem 1 to $K = k$, $R = A/p$, $L = B/n$ and $g = psi$.






                  share|cite|improve this answer









                  $endgroup$




                  Theorem 1. Let $K$ be a field. Let $R$ and $L$ be two $K$-algebras such that $L$ is a finite-dimensional $K$-vector space and $R$ is an integral domain. Let $g : R to L$ be an injective $K$-linear map. Then, $R$ is a field.




                  Proof of Theorem 1. Since the $K$-linear map $g : R to L$ is injective, we have $dim R leq dim L$, where "$dim$" refers to the dimension of a $K$-vector space. But $dim L < infty$, since $L$ is finite-dimensional. Hence, $dim R leq dim L < infty$; thus, $R$ is a finite-dimensional $K$-vector space. Therefore, any injective $K$-linear map $f : R to R$ is an isomorphism of $K$-vector spaces (according to a well-known fact from linear algebra).



                  Now, let $a in R$ be nonzero. Let $M_a$ denote the map $R to R, r mapsto ar$. This map $M_a : R to R$ is $K$-linear and has kernel $0$ (because every $r in R$ satisfying $ar = 0$ must satisfy $r = 0$ (since $R$ is an integral domain and $a$ is nonzero)); thus, it is injective. Hence, it is an isomorphism of $K$-vector spaces (since any injective $K$-linear map $f : R to R$ is an isomorphism of $K$-vector spaces). Thus, it is surjective. Therefore, there exists some $s in R$ such that $M_aleft(sright) = 1$. Consider this $s$. Now, the definition of $M_a$ yields $M_aleft(sright) = as$, so that $as = M_aleft(sright) = 1$. In other words, $s$ is a (multiplicative) inverse of $a$. Hence, $a$ has an inverse.



                  We have thus proven that every nonzero $a in R$ has an inverse. In other words, the ring $R$ is an integral domain. This proves Theorem 1. $blacksquare$



                  In your situation, you should apply Theorem 1 to $K = k$, $R = A/p$, $L = B/n$ and $g = psi$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 53 mins ago









                  darij grinbergdarij grinberg

                  11.3k33167




                  11.3k33167





















                      2












                      $begingroup$

                      Suppose $F$ is any field, $E$ is a finite extension field of $F$, and $D$ is an integral domain such that



                      $F subset D subset E; tag 1$



                      since



                      $[E:F] = n < infty, tag 2$



                      every element of $D$ is algebraic over $F$; thus



                      $0 ne d in D tag 3$



                      satisfies some



                      $p(x) in F[x]; tag 4$



                      that is,



                      $p(d) = 0; tag 5$



                      we may write



                      $p(x) = displaystyle sum_0^deg p p_j x^j, ; p_j in F; tag 6$



                      then



                      $displaystyle sum_0^deg p p_j d^j = p(d) = 0; tag 7$



                      furthermore, we may assume $p(x)$ is of minimal degree of all polynomials in $F[x]$ satisfied by $d$. In this case, we must have



                      $p_0 ne 0; tag 8$



                      if not, then



                      $p(x) = displaystyle sum_1^deg p p_jx^j = x sum_1^deg p p_j x^j - 1; tag 9$



                      thus



                      $d displaystyle sum_1^deg p p_j d^j - 1 = 0, tag10$



                      and via (4) this forces



                      $displaystyle sum_1^deg p p_j d^j - 1 = 0, tag11$



                      since $D$ is an integral domain; but this asserts that $d$ satisfies the polynomial



                      $displaystyle sum_1^deg p p_ x^j - 1 in F[x] tag12$



                      of degree $deg p - 1$, which contradicts the minimality of the degree of $p(x)$; therefore (8) binds and we may write



                      $displaystyle sum_1^deg pp_j d^j = -p_0, tag13$



                      or



                      $d left( -p_0^-1displaystyle sum_1^deg p p_j d^j- 1 right ) = 1, tag14$



                      which shows that



                      $d^-1 = -p_0^-1displaystyle sum_1^deg p p_j d^j- 1 in D; tag15$



                      since every $0 ne d in D$ has in iverse in $D$ by (15), $D$ is indeed a field.






                      share|cite|improve this answer









                      $endgroup$

















                        2












                        $begingroup$

                        Suppose $F$ is any field, $E$ is a finite extension field of $F$, and $D$ is an integral domain such that



                        $F subset D subset E; tag 1$



                        since



                        $[E:F] = n < infty, tag 2$



                        every element of $D$ is algebraic over $F$; thus



                        $0 ne d in D tag 3$



                        satisfies some



                        $p(x) in F[x]; tag 4$



                        that is,



                        $p(d) = 0; tag 5$



                        we may write



                        $p(x) = displaystyle sum_0^deg p p_j x^j, ; p_j in F; tag 6$



                        then



                        $displaystyle sum_0^deg p p_j d^j = p(d) = 0; tag 7$



                        furthermore, we may assume $p(x)$ is of minimal degree of all polynomials in $F[x]$ satisfied by $d$. In this case, we must have



                        $p_0 ne 0; tag 8$



                        if not, then



                        $p(x) = displaystyle sum_1^deg p p_jx^j = x sum_1^deg p p_j x^j - 1; tag 9$



                        thus



                        $d displaystyle sum_1^deg p p_j d^j - 1 = 0, tag10$



                        and via (4) this forces



                        $displaystyle sum_1^deg p p_j d^j - 1 = 0, tag11$



                        since $D$ is an integral domain; but this asserts that $d$ satisfies the polynomial



                        $displaystyle sum_1^deg p p_ x^j - 1 in F[x] tag12$



                        of degree $deg p - 1$, which contradicts the minimality of the degree of $p(x)$; therefore (8) binds and we may write



                        $displaystyle sum_1^deg pp_j d^j = -p_0, tag13$



                        or



                        $d left( -p_0^-1displaystyle sum_1^deg p p_j d^j- 1 right ) = 1, tag14$



                        which shows that



                        $d^-1 = -p_0^-1displaystyle sum_1^deg p p_j d^j- 1 in D; tag15$



                        since every $0 ne d in D$ has in iverse in $D$ by (15), $D$ is indeed a field.






                        share|cite|improve this answer









                        $endgroup$















                          2












                          2








                          2





                          $begingroup$

                          Suppose $F$ is any field, $E$ is a finite extension field of $F$, and $D$ is an integral domain such that



                          $F subset D subset E; tag 1$



                          since



                          $[E:F] = n < infty, tag 2$



                          every element of $D$ is algebraic over $F$; thus



                          $0 ne d in D tag 3$



                          satisfies some



                          $p(x) in F[x]; tag 4$



                          that is,



                          $p(d) = 0; tag 5$



                          we may write



                          $p(x) = displaystyle sum_0^deg p p_j x^j, ; p_j in F; tag 6$



                          then



                          $displaystyle sum_0^deg p p_j d^j = p(d) = 0; tag 7$



                          furthermore, we may assume $p(x)$ is of minimal degree of all polynomials in $F[x]$ satisfied by $d$. In this case, we must have



                          $p_0 ne 0; tag 8$



                          if not, then



                          $p(x) = displaystyle sum_1^deg p p_jx^j = x sum_1^deg p p_j x^j - 1; tag 9$



                          thus



                          $d displaystyle sum_1^deg p p_j d^j - 1 = 0, tag10$



                          and via (4) this forces



                          $displaystyle sum_1^deg p p_j d^j - 1 = 0, tag11$



                          since $D$ is an integral domain; but this asserts that $d$ satisfies the polynomial



                          $displaystyle sum_1^deg p p_ x^j - 1 in F[x] tag12$



                          of degree $deg p - 1$, which contradicts the minimality of the degree of $p(x)$; therefore (8) binds and we may write



                          $displaystyle sum_1^deg pp_j d^j = -p_0, tag13$



                          or



                          $d left( -p_0^-1displaystyle sum_1^deg p p_j d^j- 1 right ) = 1, tag14$



                          which shows that



                          $d^-1 = -p_0^-1displaystyle sum_1^deg p p_j d^j- 1 in D; tag15$



                          since every $0 ne d in D$ has in iverse in $D$ by (15), $D$ is indeed a field.






                          share|cite|improve this answer









                          $endgroup$



                          Suppose $F$ is any field, $E$ is a finite extension field of $F$, and $D$ is an integral domain such that



                          $F subset D subset E; tag 1$



                          since



                          $[E:F] = n < infty, tag 2$



                          every element of $D$ is algebraic over $F$; thus



                          $0 ne d in D tag 3$



                          satisfies some



                          $p(x) in F[x]; tag 4$



                          that is,



                          $p(d) = 0; tag 5$



                          we may write



                          $p(x) = displaystyle sum_0^deg p p_j x^j, ; p_j in F; tag 6$



                          then



                          $displaystyle sum_0^deg p p_j d^j = p(d) = 0; tag 7$



                          furthermore, we may assume $p(x)$ is of minimal degree of all polynomials in $F[x]$ satisfied by $d$. In this case, we must have



                          $p_0 ne 0; tag 8$



                          if not, then



                          $p(x) = displaystyle sum_1^deg p p_jx^j = x sum_1^deg p p_j x^j - 1; tag 9$



                          thus



                          $d displaystyle sum_1^deg p p_j d^j - 1 = 0, tag10$



                          and via (4) this forces



                          $displaystyle sum_1^deg p p_j d^j - 1 = 0, tag11$



                          since $D$ is an integral domain; but this asserts that $d$ satisfies the polynomial



                          $displaystyle sum_1^deg p p_ x^j - 1 in F[x] tag12$



                          of degree $deg p - 1$, which contradicts the minimality of the degree of $p(x)$; therefore (8) binds and we may write



                          $displaystyle sum_1^deg pp_j d^j = -p_0, tag13$



                          or



                          $d left( -p_0^-1displaystyle sum_1^deg p p_j d^j- 1 right ) = 1, tag14$



                          which shows that



                          $d^-1 = -p_0^-1displaystyle sum_1^deg p p_j d^j- 1 in D; tag15$



                          since every $0 ne d in D$ has in iverse in $D$ by (15), $D$ is indeed a field.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 49 mins ago









                          Robert LewisRobert Lewis

                          48.3k23167




                          48.3k23167



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3161381%2fwhy-does-the-integral-domain-being-trapped-between-a-finite-field-extension-im%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Are there any AGPL-style licences that require source code modifications to be public? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Force derivative works to be publicAre there any GPL like licenses for Apple App Store?Do you violate the GPL if you provide source code that cannot be compiled?GPL - is it distribution to use libraries in an appliance loaned to customers?Distributing App for free which uses GPL'ed codeModifications of server software under GPL, with web/CLI interfaceDoes using an AGPLv3-licensed library prevent me from dual-licensing my own source code?Can I publish only select code under GPLv3 from a private project?Is there published precedent regarding the scope of covered work that uses AGPL software?If MIT licensed code links to GPL licensed code what should be the license of the resulting binary program?If I use a public API endpoint that has its source code licensed under AGPL in my app, do I need to disclose my source?

                              2013 GY136 Descoberta | Órbita | Referências Menu de navegação«List Of Centaurs and Scattered-Disk Objects»«List of Known Trans-Neptunian Objects»

                              Mortes em março de 2019 Referências Menu de navegação«Zhores Alferov, Nobel de Física bielorrusso, morre aos 88 anos - Ciência»«Fallece Rafael Torija, o bispo emérito de Ciudad Real»«Peter Hurford dies at 88»«Keith Flint, vocalista do The Prodigy, morre aos 49 anos»«Luke Perry, ator de 'Barrados no baile' e 'Riverdale', morre aos 52 anos»«Former Rangers and Scotland captain Eric Caldow dies, aged 84»«Morreu, aos 61 anos, a antiga lenda do wrestling King Kong Bundy»«Fallece el actor y director teatral Abraham Stavans»«In Memoriam Guillaume Faye»«Sidney Sheinberg, a Force Behind Universal and Spielberg, Is Dead at 84»«Carmine Persico, Colombo Crime Family Boss, Is Dead at 85»«Dirigent Michael Gielen gestorben»«Ciclista tricampeã mundial e prata na Rio 2016 é encontrada morta em casa aos 23 anos»«Pagan Community Notes: Raven Grimassi dies, Indianapolis pop-up event cancelled, Circle Sanctuary announces new podcast, and more!»«Hal Blaine, Wrecking Crew Drummer, Dies at 90»«Morre Coutinho, que editou dupla lendária com Pelé no Santos»«Cantor Demétrius, ídolo da Jovem Guarda, morre em SP»«Ex-presidente do Vasco, Eurico Miranda morre no Rio de Janeiro»«Bronze no Mundial de basquete de 1971, Laís Elena morre aos 76 anos»«Diretor de Corridas da F1, Charlie Whiting morre aos 66 anos às vésperas do GP da Austrália»«Morreu o cardeal Danneels, da Bélgica»«Morreu o cartoonista Augusto Cid»«Morreu a atriz Maria Isabel de Lizandra, de "Vale Tudo" e novelas da Tupi»«WS Merwin, prize-winning poet of nature, dies at 91»«Atriz Márcia Real morre em São Paulo aos 88 anos»«Mauritanie: décès de l'ancien président Mohamed Mahmoud ould Louly»«Morreu Dick Dale, o rei da surf guitar e de "Pulp Fiction"»«Falleció Víctor Genes»«João Carlos Marinho, autor de 'O Gênio do Crime', morre em SP»«Legendary Horror Director and SFX Artist John Carl Buechler Dies at 66»«Morre em Salvador a religiosa Makota Valdina»«مرگ بازیکن‌ سابق نساجی بر اثر سقوط سنگ در مازندران»«Domingos Oliveira morre no Rio»«Morre Airton Ravagniani, ex-São Paulo, Fla, Vasco, Grêmio e Sport - Notícias»«Morre o escritor Flavio Moreira da Costa»«Larry Cohen, Writer-Director of 'It's Alive' and 'Hell Up in Harlem,' Dies at 77»«Scott Walker, experimental singer-songwriter, dead at 76»«Joseph Pilato, Day of the Dead Star and Horror Favorite, Dies at 70»«Sheffield United set to pay tribute to legendary goalkeeper Ted Burgin who has died at 91»«Morre Rafael Henzel, sobrevivente de acidente aéreo da Chapecoense»«Morre Valery Bykovsky, um dos primeiros cosmonautas da União Soviética»«Agnès Varda, cineasta da Nouvelle Vague, morre aos 90 anos»«Agnès Varda, cineasta francesa, morre aos 90 anos»«Tania Mallet, James Bond Actress and Helen Mirren's Cousin, Dies at 77»e