Unable to evaluate Eigenvalues and Eigenvectors for a matrix (2)Unable to evaluate Eigenvalues and Eigenvectors for a matrixProblem with Eigenvectors when given a matrix containing approximate numbers and symbolsIs Eigensystem::eivin message a bug?Seemingly wrong eigenvectors for numerical matrix whose elements differ in scale by orders of magnitudeInverse of a 3x3 MatrixConvert, using the Pauli matrices, an $n times m$ matrix of quaternions into a $2 n times 2 m$ matrix with complex entries, and vice versaEigenvalues and eigenvectors of tensorsNo eigenvectors coming for a very simple* matrixUnable to evaluate Eigenvalues and Eigenvectors for a matrixBasis for unstable manifold of a matrixDensity map for complex and imaginary parts of eigenvalues on one graph

How do I hide Chekhov's Gun?

Tikz picture of two mathematical functions

Does this sum go infinity?

Why one should not leave fingerprints on bulbs and plugs?

Happy pi day, everyone!

Are Roman Catholic priests ever addressed as pastor

Is there a place to find the pricing for things not mentioned in the PHB? (non-magical)

Examples of transfinite towers

Is "upgrade" the right word to use in this context?

Recruiter wants very extensive technical details about all of my previous work

Welcoming 2019 Pi day: How to draw the letter π?

How to explain that I do not want to visit a country due to personal safety concern?

Is it true that good novels will automatically sell themselves on Amazon (and so on) and there is no need for one to waste time promoting?

How do you talk to someone whose loved one is dying?

Is a party consisting of only a bard, a cleric, and a warlock functional long-term?

Python if-else code style for reduced code for rounding floats

"of which" is correct here?

Equivalents to the present tense

How to terminate ping <dest> &

How to pronounce "I ♥ Huckabees"?

Simplify an interface for flexibly applying rules to periods of time

et qui - how do you really understand that kind of phraseology?

Math equation in non italic font

Fastest way to pop N items from a large dict



Unable to evaluate Eigenvalues and Eigenvectors for a matrix (2)


Unable to evaluate Eigenvalues and Eigenvectors for a matrixProblem with Eigenvectors when given a matrix containing approximate numbers and symbolsIs Eigensystem::eivin message a bug?Seemingly wrong eigenvectors for numerical matrix whose elements differ in scale by orders of magnitudeInverse of a 3x3 MatrixConvert, using the Pauli matrices, an $n times m$ matrix of quaternions into a $2 n times 2 m$ matrix with complex entries, and vice versaEigenvalues and eigenvectors of tensorsNo eigenvectors coming for a very simple* matrixUnable to evaluate Eigenvalues and Eigenvectors for a matrixBasis for unstable manifold of a matrixDensity map for complex and imaginary parts of eigenvalues on one graph













2












$begingroup$


I have posted a similar question last year pertaining to this issue. Here's a link to my post together with the solution given: Unable to evaluate Eigenvalues and Eigenvectors for a matrix



I have tried the methods in my previous posts but to no avail. Here's the problem: I have the following 3x3 matrix



m = -γ/2, -I*g1, -I*Exp[-I*α]*g3, -I*g1, -(κ1)/2, -I*g2, -I*Exp[I*α]*g3, -I*g2, -(κ2)/2]


where I represents the complex identity Sqrt[-1]. I wish to find the eigenvectors for the matrix for two different alpha values. For α = π/2, simply doing (after manually replacing α with π/2)



Eigenvectors[m, Cubics->True]


Returns the appropriate (albeit long) eigenvectors. Now however, if I change my α to α = π and run



 Eigenvectors[m, Cubics->True]


I am returned with



...Eigenvectors: Unable to find all eigenvectors


Which is the similar issue encountered in the link that I provided above a while ago. I proceed to perform the same fix detailed in that question. Namely



Simplify[Eigenvectors[mchiral /. Complex[0, -1] -> mi, Cubics -> True] /. mi -> -I];


and I am still returned with the same error. Namely



...Eigenvectors: Unable to find all eigenvectors


What is the problem here?










share|improve this question











$endgroup$











  • $begingroup$
    There is no problem: imgur.com/a/ALdYCou Except that you have some brackets misplaced in the definition of m that I fixed – but check if the form is the desired one.
    $endgroup$
    – corey979
    4 hours ago











  • $begingroup$
    @corey979 Interesting. I am on version 11.3 for macOS and I do get the error message (even after fixing the brackets).
    $endgroup$
    – Henrik Schumacher
    4 hours ago










  • $begingroup$
    How many times have I advocated for providing the $Version one is using... I'm on 10.4 and there is no problem, as showed. Indeed, there is an error in 11.3. No idea what version the OP is using. Unless he clarifies there is virtually no problem.
    $endgroup$
    – corey979
    4 hours ago










  • $begingroup$
    @corey979 Apologies but I'm using version 11.3. The error still persists even after the bracket fix. I don't know what the problem is
    $endgroup$
    – kowalski
    4 hours ago















2












$begingroup$


I have posted a similar question last year pertaining to this issue. Here's a link to my post together with the solution given: Unable to evaluate Eigenvalues and Eigenvectors for a matrix



I have tried the methods in my previous posts but to no avail. Here's the problem: I have the following 3x3 matrix



m = -γ/2, -I*g1, -I*Exp[-I*α]*g3, -I*g1, -(κ1)/2, -I*g2, -I*Exp[I*α]*g3, -I*g2, -(κ2)/2]


where I represents the complex identity Sqrt[-1]. I wish to find the eigenvectors for the matrix for two different alpha values. For α = π/2, simply doing (after manually replacing α with π/2)



Eigenvectors[m, Cubics->True]


Returns the appropriate (albeit long) eigenvectors. Now however, if I change my α to α = π and run



 Eigenvectors[m, Cubics->True]


I am returned with



...Eigenvectors: Unable to find all eigenvectors


Which is the similar issue encountered in the link that I provided above a while ago. I proceed to perform the same fix detailed in that question. Namely



Simplify[Eigenvectors[mchiral /. Complex[0, -1] -> mi, Cubics -> True] /. mi -> -I];


and I am still returned with the same error. Namely



...Eigenvectors: Unable to find all eigenvectors


What is the problem here?










share|improve this question











$endgroup$











  • $begingroup$
    There is no problem: imgur.com/a/ALdYCou Except that you have some brackets misplaced in the definition of m that I fixed – but check if the form is the desired one.
    $endgroup$
    – corey979
    4 hours ago











  • $begingroup$
    @corey979 Interesting. I am on version 11.3 for macOS and I do get the error message (even after fixing the brackets).
    $endgroup$
    – Henrik Schumacher
    4 hours ago










  • $begingroup$
    How many times have I advocated for providing the $Version one is using... I'm on 10.4 and there is no problem, as showed. Indeed, there is an error in 11.3. No idea what version the OP is using. Unless he clarifies there is virtually no problem.
    $endgroup$
    – corey979
    4 hours ago










  • $begingroup$
    @corey979 Apologies but I'm using version 11.3. The error still persists even after the bracket fix. I don't know what the problem is
    $endgroup$
    – kowalski
    4 hours ago













2












2








2





$begingroup$


I have posted a similar question last year pertaining to this issue. Here's a link to my post together with the solution given: Unable to evaluate Eigenvalues and Eigenvectors for a matrix



I have tried the methods in my previous posts but to no avail. Here's the problem: I have the following 3x3 matrix



m = -γ/2, -I*g1, -I*Exp[-I*α]*g3, -I*g1, -(κ1)/2, -I*g2, -I*Exp[I*α]*g3, -I*g2, -(κ2)/2]


where I represents the complex identity Sqrt[-1]. I wish to find the eigenvectors for the matrix for two different alpha values. For α = π/2, simply doing (after manually replacing α with π/2)



Eigenvectors[m, Cubics->True]


Returns the appropriate (albeit long) eigenvectors. Now however, if I change my α to α = π and run



 Eigenvectors[m, Cubics->True]


I am returned with



...Eigenvectors: Unable to find all eigenvectors


Which is the similar issue encountered in the link that I provided above a while ago. I proceed to perform the same fix detailed in that question. Namely



Simplify[Eigenvectors[mchiral /. Complex[0, -1] -> mi, Cubics -> True] /. mi -> -I];


and I am still returned with the same error. Namely



...Eigenvectors: Unable to find all eigenvectors


What is the problem here?










share|improve this question











$endgroup$




I have posted a similar question last year pertaining to this issue. Here's a link to my post together with the solution given: Unable to evaluate Eigenvalues and Eigenvectors for a matrix



I have tried the methods in my previous posts but to no avail. Here's the problem: I have the following 3x3 matrix



m = -γ/2, -I*g1, -I*Exp[-I*α]*g3, -I*g1, -(κ1)/2, -I*g2, -I*Exp[I*α]*g3, -I*g2, -(κ2)/2]


where I represents the complex identity Sqrt[-1]. I wish to find the eigenvectors for the matrix for two different alpha values. For α = π/2, simply doing (after manually replacing α with π/2)



Eigenvectors[m, Cubics->True]


Returns the appropriate (albeit long) eigenvectors. Now however, if I change my α to α = π and run



 Eigenvectors[m, Cubics->True]


I am returned with



...Eigenvectors: Unable to find all eigenvectors


Which is the similar issue encountered in the link that I provided above a while ago. I proceed to perform the same fix detailed in that question. Namely



Simplify[Eigenvectors[mchiral /. Complex[0, -1] -> mi, Cubics -> True] /. mi -> -I];


and I am still returned with the same error. Namely



...Eigenvectors: Unable to find all eigenvectors


What is the problem here?







matrix eigenvalues






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 4 hours ago









corey979

20.9k64282




20.9k64282










asked 4 hours ago









kowalskikowalski

1559




1559











  • $begingroup$
    There is no problem: imgur.com/a/ALdYCou Except that you have some brackets misplaced in the definition of m that I fixed – but check if the form is the desired one.
    $endgroup$
    – corey979
    4 hours ago











  • $begingroup$
    @corey979 Interesting. I am on version 11.3 for macOS and I do get the error message (even after fixing the brackets).
    $endgroup$
    – Henrik Schumacher
    4 hours ago










  • $begingroup$
    How many times have I advocated for providing the $Version one is using... I'm on 10.4 and there is no problem, as showed. Indeed, there is an error in 11.3. No idea what version the OP is using. Unless he clarifies there is virtually no problem.
    $endgroup$
    – corey979
    4 hours ago










  • $begingroup$
    @corey979 Apologies but I'm using version 11.3. The error still persists even after the bracket fix. I don't know what the problem is
    $endgroup$
    – kowalski
    4 hours ago
















  • $begingroup$
    There is no problem: imgur.com/a/ALdYCou Except that you have some brackets misplaced in the definition of m that I fixed – but check if the form is the desired one.
    $endgroup$
    – corey979
    4 hours ago











  • $begingroup$
    @corey979 Interesting. I am on version 11.3 for macOS and I do get the error message (even after fixing the brackets).
    $endgroup$
    – Henrik Schumacher
    4 hours ago










  • $begingroup$
    How many times have I advocated for providing the $Version one is using... I'm on 10.4 and there is no problem, as showed. Indeed, there is an error in 11.3. No idea what version the OP is using. Unless he clarifies there is virtually no problem.
    $endgroup$
    – corey979
    4 hours ago










  • $begingroup$
    @corey979 Apologies but I'm using version 11.3. The error still persists even after the bracket fix. I don't know what the problem is
    $endgroup$
    – kowalski
    4 hours ago















$begingroup$
There is no problem: imgur.com/a/ALdYCou Except that you have some brackets misplaced in the definition of m that I fixed – but check if the form is the desired one.
$endgroup$
– corey979
4 hours ago





$begingroup$
There is no problem: imgur.com/a/ALdYCou Except that you have some brackets misplaced in the definition of m that I fixed – but check if the form is the desired one.
$endgroup$
– corey979
4 hours ago













$begingroup$
@corey979 Interesting. I am on version 11.3 for macOS and I do get the error message (even after fixing the brackets).
$endgroup$
– Henrik Schumacher
4 hours ago




$begingroup$
@corey979 Interesting. I am on version 11.3 for macOS and I do get the error message (even after fixing the brackets).
$endgroup$
– Henrik Schumacher
4 hours ago












$begingroup$
How many times have I advocated for providing the $Version one is using... I'm on 10.4 and there is no problem, as showed. Indeed, there is an error in 11.3. No idea what version the OP is using. Unless he clarifies there is virtually no problem.
$endgroup$
– corey979
4 hours ago




$begingroup$
How many times have I advocated for providing the $Version one is using... I'm on 10.4 and there is no problem, as showed. Indeed, there is an error in 11.3. No idea what version the OP is using. Unless he clarifies there is virtually no problem.
$endgroup$
– corey979
4 hours ago












$begingroup$
@corey979 Apologies but I'm using version 11.3. The error still persists even after the bracket fix. I don't know what the problem is
$endgroup$
– kowalski
4 hours ago




$begingroup$
@corey979 Apologies but I'm using version 11.3. The error still persists even after the bracket fix. I don't know what the problem is
$endgroup$
– kowalski
4 hours ago










1 Answer
1






active

oldest

votes


















2












$begingroup$

I have o clue why this did not work. However, this old-fashioned method seems to work



m = 
-γ/2, -I g1, -I Exp[-I α] g3,
-I g1, -(κ1)/2, -I g2,
-I Exp[I α] g3, -I g2, -(κ2)/2
;

a = m /. α -> π;
λ = Eigenvalues[a] // ToRadicals;
U = Flatten[NullSpace[a - # IdentityMatrix[3]] & /@ λ, 1];

Simplify[a.Transpose[U] - Transpose[U].DiagonalMatrix[λ]]



0, 0, 0, 0, 0, 0, 0, 0, 0







share|improve this answer











$endgroup$












  • $begingroup$
    The eigenvalues seems to be fine. It's long but it prints. The eigenvectors on the other hand, are still unobtainable. I'm starting to think if this is alpha dependent since it works for pi/2 but not pi. But that's just silly and shouldn't happen
    $endgroup$
    – kowalski
    4 hours ago










  • $begingroup$
    @kowalski U produced by the code above contains the eigenvectors.
    $endgroup$
    – Henrik Schumacher
    4 hours ago










Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "387"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193391%2funable-to-evaluate-eigenvalues-and-eigenvectors-for-a-matrix-2%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

I have o clue why this did not work. However, this old-fashioned method seems to work



m = 
-γ/2, -I g1, -I Exp[-I α] g3,
-I g1, -(κ1)/2, -I g2,
-I Exp[I α] g3, -I g2, -(κ2)/2
;

a = m /. α -> π;
λ = Eigenvalues[a] // ToRadicals;
U = Flatten[NullSpace[a - # IdentityMatrix[3]] & /@ λ, 1];

Simplify[a.Transpose[U] - Transpose[U].DiagonalMatrix[λ]]



0, 0, 0, 0, 0, 0, 0, 0, 0







share|improve this answer











$endgroup$












  • $begingroup$
    The eigenvalues seems to be fine. It's long but it prints. The eigenvectors on the other hand, are still unobtainable. I'm starting to think if this is alpha dependent since it works for pi/2 but not pi. But that's just silly and shouldn't happen
    $endgroup$
    – kowalski
    4 hours ago










  • $begingroup$
    @kowalski U produced by the code above contains the eigenvectors.
    $endgroup$
    – Henrik Schumacher
    4 hours ago















2












$begingroup$

I have o clue why this did not work. However, this old-fashioned method seems to work



m = 
-γ/2, -I g1, -I Exp[-I α] g3,
-I g1, -(κ1)/2, -I g2,
-I Exp[I α] g3, -I g2, -(κ2)/2
;

a = m /. α -> π;
λ = Eigenvalues[a] // ToRadicals;
U = Flatten[NullSpace[a - # IdentityMatrix[3]] & /@ λ, 1];

Simplify[a.Transpose[U] - Transpose[U].DiagonalMatrix[λ]]



0, 0, 0, 0, 0, 0, 0, 0, 0







share|improve this answer











$endgroup$












  • $begingroup$
    The eigenvalues seems to be fine. It's long but it prints. The eigenvectors on the other hand, are still unobtainable. I'm starting to think if this is alpha dependent since it works for pi/2 but not pi. But that's just silly and shouldn't happen
    $endgroup$
    – kowalski
    4 hours ago










  • $begingroup$
    @kowalski U produced by the code above contains the eigenvectors.
    $endgroup$
    – Henrik Schumacher
    4 hours ago













2












2








2





$begingroup$

I have o clue why this did not work. However, this old-fashioned method seems to work



m = 
-γ/2, -I g1, -I Exp[-I α] g3,
-I g1, -(κ1)/2, -I g2,
-I Exp[I α] g3, -I g2, -(κ2)/2
;

a = m /. α -> π;
λ = Eigenvalues[a] // ToRadicals;
U = Flatten[NullSpace[a - # IdentityMatrix[3]] & /@ λ, 1];

Simplify[a.Transpose[U] - Transpose[U].DiagonalMatrix[λ]]



0, 0, 0, 0, 0, 0, 0, 0, 0







share|improve this answer











$endgroup$



I have o clue why this did not work. However, this old-fashioned method seems to work



m = 
-γ/2, -I g1, -I Exp[-I α] g3,
-I g1, -(κ1)/2, -I g2,
-I Exp[I α] g3, -I g2, -(κ2)/2
;

a = m /. α -> π;
λ = Eigenvalues[a] // ToRadicals;
U = Flatten[NullSpace[a - # IdentityMatrix[3]] & /@ λ, 1];

Simplify[a.Transpose[U] - Transpose[U].DiagonalMatrix[λ]]



0, 0, 0, 0, 0, 0, 0, 0, 0








share|improve this answer














share|improve this answer



share|improve this answer








edited 4 hours ago

























answered 4 hours ago









Henrik SchumacherHenrik Schumacher

56.7k577157




56.7k577157











  • $begingroup$
    The eigenvalues seems to be fine. It's long but it prints. The eigenvectors on the other hand, are still unobtainable. I'm starting to think if this is alpha dependent since it works for pi/2 but not pi. But that's just silly and shouldn't happen
    $endgroup$
    – kowalski
    4 hours ago










  • $begingroup$
    @kowalski U produced by the code above contains the eigenvectors.
    $endgroup$
    – Henrik Schumacher
    4 hours ago
















  • $begingroup$
    The eigenvalues seems to be fine. It's long but it prints. The eigenvectors on the other hand, are still unobtainable. I'm starting to think if this is alpha dependent since it works for pi/2 but not pi. But that's just silly and shouldn't happen
    $endgroup$
    – kowalski
    4 hours ago










  • $begingroup$
    @kowalski U produced by the code above contains the eigenvectors.
    $endgroup$
    – Henrik Schumacher
    4 hours ago















$begingroup$
The eigenvalues seems to be fine. It's long but it prints. The eigenvectors on the other hand, are still unobtainable. I'm starting to think if this is alpha dependent since it works for pi/2 but not pi. But that's just silly and shouldn't happen
$endgroup$
– kowalski
4 hours ago




$begingroup$
The eigenvalues seems to be fine. It's long but it prints. The eigenvectors on the other hand, are still unobtainable. I'm starting to think if this is alpha dependent since it works for pi/2 but not pi. But that's just silly and shouldn't happen
$endgroup$
– kowalski
4 hours ago












$begingroup$
@kowalski U produced by the code above contains the eigenvectors.
$endgroup$
– Henrik Schumacher
4 hours ago




$begingroup$
@kowalski U produced by the code above contains the eigenvectors.
$endgroup$
– Henrik Schumacher
4 hours ago

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematica Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193391%2funable-to-evaluate-eigenvalues-and-eigenvectors-for-a-matrix-2%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Era Viking Índice Início da Era Viquingue | Cotidiano | Sociedade | Língua | Religião | A arte | As primeiras cidades | As viagens dos viquingues | Viquingues do Oeste e Leste | Fim da Era Viquingue | Fontes históricas | Referências Bibliografia | Ligações externas | Menu de navegação«Sverige då!»«Handel I vikingetid»«O que é Nórdico Antigo»Mito, magia e religião na volsunga saga Um olhar sobre a trajetória mítica do herói sigurd«Bonden var den verklige vikingen»«Vikingatiden»«Vikingatiden»«Vinland»«Guerreiras de Óðinn: As Valkyrjor na Mitologia Viking»1519-9053«Esculpindo símbolos e seres: A arte viking em pedras rúnicas»1679-9313Historia - Tema: VikingarnaAventura e Magia no Mundo das Sagas IslandesasEra Vikinge

Metrô de Los Teques Índice Linhas | Estações | Ver também | Referências Ligações externas | Menu de navegação«INSTITUCIÓN»«Mapa de rutas»originalMetrô de Los TequesC.A. Metro Los Teques |Alcaldía de Guaicaipuro – Sitio OficialGobernacion de Mirandaeeeeeee

What's the metal clinking sound at the end of credits in Avengers: Endgame?What makes Thanos so strong in Avengers: Endgame?Who is the character that appears at the end of Endgame?What happens to Mjolnir (Thor's hammer) at the end of Endgame?The People's Ages in Avengers: EndgameWhat did Nebula do in Avengers: Endgame?Messing with time in the Avengers: Endgame climaxAvengers: Endgame timelineWhat are the time-travel rules in Avengers Endgame?Why use this song in Avengers: Endgame Opening Logo Sequence?Peggy's age in Avengers Endgame