What is the relationship between relativity and the Doppler effect?Relativistic Doppler Effect compared with Classical Doppler EffectThe Equivalence principle of General Relativity and the Doppler EffectDoppler effect via reflectionDoes Doppler Effect violate Galilean relativity?Spectral lines and the Doppler effectTransverse Doppler effect (classical)What is the difference between these formulas? (Doppler effect)Doppler Effect and RelativityWhat is this connection between clocks and the Doppler effect?Doppler Effect and Speed relativity

Is it insecure to send a password in a `curl` command?

Why do passenger jet manufacturers design their planes with stall prevention systems?

Is "upgrade" the right word to use in this context?

Why do tuner card drivers fail to build after kernel update to 4.4.0-143-generic?

Adventure Game (text based) in C++

Do the common programs (for example: "ls", "cat") in Linux and BSD come from the same source code?

What options are left, if Britain cannot decide?

How to deal with taxi scam when on vacation?

Most cost effective thermostat setting: consistent temperature vs. lowest temperature possible

Employee lack of ownership

PTIJ: Who should I vote for? (21st Knesset Edition)

Meme-controlled people

Professor being mistaken for a grad student

How to write cleanly even if my character uses expletive language?

What is a ^ b and (a & b) << 1?

How do you talk to someone whose loved one is dying?

Simplify an interface for flexibly applying rules to periods of time

Fastest way to pop N items from a large dict

New passport but visa is in old (lost) passport

How to plot polar formed complex numbers?

Python if-else code style for reduced code for rounding floats

Print a physical multiplication table

How do I change two letters closest to a string and one letter immediately after a string using Notepad++?

Is there a hypothetical scenario that would make Earth uninhabitable for humans, but not for (the majority of) other animals?



What is the relationship between relativity and the Doppler effect?


Relativistic Doppler Effect compared with Classical Doppler EffectThe Equivalence principle of General Relativity and the Doppler EffectDoppler effect via reflectionDoes Doppler Effect violate Galilean relativity?Spectral lines and the Doppler effectTransverse Doppler effect (classical)What is the difference between these formulas? (Doppler effect)Doppler Effect and RelativityWhat is this connection between clocks and the Doppler effect?Doppler Effect and Speed relativity













3












$begingroup$


My sister just watched this video about space contraction (Spanish), and asked me if this is related to doppler effect.



In the clip they also introduce the idea that a bat would be affected by similar effects when measuring an object's length, due to the time it takes for sound to propagate.



I told her that:




Doppler effect is about alteration of the perceived frequency of a
signal produced by the relative movement between transmitter and
receiver. The quoted video is about relativity, which is a "deeper" effect.
Maybe doppler effect can be understood as the effect of relativity on
a wave phenomena.




Now I'm wondering about her intuition. If she's right, should I be able to take a sin function, apply a Lorentz transform to it, and arrive to same results as with the doppler formula? Unfortunately, the maths are beyond my skills.



Can someone shed some light about the relation between doppler and relativity, if any? Can be doppler effect explained by relativity/Lorentz alone?










share|cite|improve this question









New contributor




jjmontes is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$
















    3












    $begingroup$


    My sister just watched this video about space contraction (Spanish), and asked me if this is related to doppler effect.



    In the clip they also introduce the idea that a bat would be affected by similar effects when measuring an object's length, due to the time it takes for sound to propagate.



    I told her that:




    Doppler effect is about alteration of the perceived frequency of a
    signal produced by the relative movement between transmitter and
    receiver. The quoted video is about relativity, which is a "deeper" effect.
    Maybe doppler effect can be understood as the effect of relativity on
    a wave phenomena.




    Now I'm wondering about her intuition. If she's right, should I be able to take a sin function, apply a Lorentz transform to it, and arrive to same results as with the doppler formula? Unfortunately, the maths are beyond my skills.



    Can someone shed some light about the relation between doppler and relativity, if any? Can be doppler effect explained by relativity/Lorentz alone?










    share|cite|improve this question









    New contributor




    jjmontes is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      3












      3








      3





      $begingroup$


      My sister just watched this video about space contraction (Spanish), and asked me if this is related to doppler effect.



      In the clip they also introduce the idea that a bat would be affected by similar effects when measuring an object's length, due to the time it takes for sound to propagate.



      I told her that:




      Doppler effect is about alteration of the perceived frequency of a
      signal produced by the relative movement between transmitter and
      receiver. The quoted video is about relativity, which is a "deeper" effect.
      Maybe doppler effect can be understood as the effect of relativity on
      a wave phenomena.




      Now I'm wondering about her intuition. If she's right, should I be able to take a sin function, apply a Lorentz transform to it, and arrive to same results as with the doppler formula? Unfortunately, the maths are beyond my skills.



      Can someone shed some light about the relation between doppler and relativity, if any? Can be doppler effect explained by relativity/Lorentz alone?










      share|cite|improve this question









      New contributor




      jjmontes is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      My sister just watched this video about space contraction (Spanish), and asked me if this is related to doppler effect.



      In the clip they also introduce the idea that a bat would be affected by similar effects when measuring an object's length, due to the time it takes for sound to propagate.



      I told her that:




      Doppler effect is about alteration of the perceived frequency of a
      signal produced by the relative movement between transmitter and
      receiver. The quoted video is about relativity, which is a "deeper" effect.
      Maybe doppler effect can be understood as the effect of relativity on
      a wave phenomena.




      Now I'm wondering about her intuition. If she's right, should I be able to take a sin function, apply a Lorentz transform to it, and arrive to same results as with the doppler formula? Unfortunately, the maths are beyond my skills.



      Can someone shed some light about the relation between doppler and relativity, if any? Can be doppler effect explained by relativity/Lorentz alone?







      general-relativity doppler-effect popular-science






      share|cite|improve this question









      New contributor




      jjmontes is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question









      New contributor




      jjmontes is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question








      edited 23 mins ago









      knzhou

      45k11122218




      45k11122218






      New contributor




      jjmontes is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 6 hours ago









      jjmontesjjmontes

      1164




      1164




      New contributor




      jjmontes is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      jjmontes is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      jjmontes is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          2 Answers
          2






          active

          oldest

          votes


















          5












          $begingroup$

          The ordinary Doppler effect is independent of relativity; it's basically just a fact of kinematics. It's not even really a wave phenomenon; it also applies to particles. For example, the Doppler effect explains why your car windshield gets wetter faster when you're driving than when you're parked.



          The formula for the Doppler effect is
          $$f_o = fracv - v_ov - v_s f_s$$
          where $f_o$ is the observed frequency, $f_s$ is the source's emitted frequency, and $v_0$ and $v_s$ are the velocities of the observer and source. These are absolute velocities; they have to be defined with respect to the medium, e.g. the air for a sound wave. Relativity adds a correction to this formula because both the source and the observer will experience time dilation, so we should really have
          $$gamma_0 f_0 = fracv - v_ov - v_s gamma_s f_s.$$
          This is a very small correction assuming the speeds are small.



          When people talk about the relativistic Doppler effect, they usually mean the Doppler effect for light waves specifically, with full relativistic corrections. Light waves are exceptional because they have no medium, so we aren't tied to a specific frame. It's instead more convenient to go to the observer's frame, where we naively have
          $$f_o = fracc - v_rc f_s$$
          where $v_r$ is the relative velocity. Relativity corrects this formula in two ways. First, velocities don't quite add linearly, so $v_r neq v_o - v_s$ in general. Second, we have to remember the time dilation factor for the source,
          $$f_o = fracc - v_rc gamma_s f_s = sqrtfrac1 - v_r/c1 + v_r/c f_s.$$
          There is no time dilation factor for the observer, because we're in the observer's frame, where they are at rest. This last formula is what people usually call "the relativistic Doppler effect", but again it's pretty close to the nonrelativistic result as long as $v_r ll c$.






          share|cite|improve this answer











          $endgroup$




















            2












            $begingroup$

            There is a Doppler effect even without Special or General Relativity, just arising from Galilean relative motion. For example, neither of these theories is necessary to explain the fact that the pitch of an ambulance siren changes as it passes by.



            However, relativity does have to be taken into account when calculating the Doppler effect for a fast-moving object or one in a strong gravitational field. In other words, there are relativistic corrections to the Doppler effect.



            If you use a Lorentz transformation to derive the Doppler effect, you will get the right answer for any velocity, but you won’t get the Doppler effect for a gravitational field.






            share|cite|improve this answer











            $endgroup$












              Your Answer





              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "151"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );






              jjmontes is a new contributor. Be nice, and check out our Code of Conduct.









              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f466848%2fwhat-is-the-relationship-between-relativity-and-the-doppler-effect%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              5












              $begingroup$

              The ordinary Doppler effect is independent of relativity; it's basically just a fact of kinematics. It's not even really a wave phenomenon; it also applies to particles. For example, the Doppler effect explains why your car windshield gets wetter faster when you're driving than when you're parked.



              The formula for the Doppler effect is
              $$f_o = fracv - v_ov - v_s f_s$$
              where $f_o$ is the observed frequency, $f_s$ is the source's emitted frequency, and $v_0$ and $v_s$ are the velocities of the observer and source. These are absolute velocities; they have to be defined with respect to the medium, e.g. the air for a sound wave. Relativity adds a correction to this formula because both the source and the observer will experience time dilation, so we should really have
              $$gamma_0 f_0 = fracv - v_ov - v_s gamma_s f_s.$$
              This is a very small correction assuming the speeds are small.



              When people talk about the relativistic Doppler effect, they usually mean the Doppler effect for light waves specifically, with full relativistic corrections. Light waves are exceptional because they have no medium, so we aren't tied to a specific frame. It's instead more convenient to go to the observer's frame, where we naively have
              $$f_o = fracc - v_rc f_s$$
              where $v_r$ is the relative velocity. Relativity corrects this formula in two ways. First, velocities don't quite add linearly, so $v_r neq v_o - v_s$ in general. Second, we have to remember the time dilation factor for the source,
              $$f_o = fracc - v_rc gamma_s f_s = sqrtfrac1 - v_r/c1 + v_r/c f_s.$$
              There is no time dilation factor for the observer, because we're in the observer's frame, where they are at rest. This last formula is what people usually call "the relativistic Doppler effect", but again it's pretty close to the nonrelativistic result as long as $v_r ll c$.






              share|cite|improve this answer











              $endgroup$

















                5












                $begingroup$

                The ordinary Doppler effect is independent of relativity; it's basically just a fact of kinematics. It's not even really a wave phenomenon; it also applies to particles. For example, the Doppler effect explains why your car windshield gets wetter faster when you're driving than when you're parked.



                The formula for the Doppler effect is
                $$f_o = fracv - v_ov - v_s f_s$$
                where $f_o$ is the observed frequency, $f_s$ is the source's emitted frequency, and $v_0$ and $v_s$ are the velocities of the observer and source. These are absolute velocities; they have to be defined with respect to the medium, e.g. the air for a sound wave. Relativity adds a correction to this formula because both the source and the observer will experience time dilation, so we should really have
                $$gamma_0 f_0 = fracv - v_ov - v_s gamma_s f_s.$$
                This is a very small correction assuming the speeds are small.



                When people talk about the relativistic Doppler effect, they usually mean the Doppler effect for light waves specifically, with full relativistic corrections. Light waves are exceptional because they have no medium, so we aren't tied to a specific frame. It's instead more convenient to go to the observer's frame, where we naively have
                $$f_o = fracc - v_rc f_s$$
                where $v_r$ is the relative velocity. Relativity corrects this formula in two ways. First, velocities don't quite add linearly, so $v_r neq v_o - v_s$ in general. Second, we have to remember the time dilation factor for the source,
                $$f_o = fracc - v_rc gamma_s f_s = sqrtfrac1 - v_r/c1 + v_r/c f_s.$$
                There is no time dilation factor for the observer, because we're in the observer's frame, where they are at rest. This last formula is what people usually call "the relativistic Doppler effect", but again it's pretty close to the nonrelativistic result as long as $v_r ll c$.






                share|cite|improve this answer











                $endgroup$















                  5












                  5








                  5





                  $begingroup$

                  The ordinary Doppler effect is independent of relativity; it's basically just a fact of kinematics. It's not even really a wave phenomenon; it also applies to particles. For example, the Doppler effect explains why your car windshield gets wetter faster when you're driving than when you're parked.



                  The formula for the Doppler effect is
                  $$f_o = fracv - v_ov - v_s f_s$$
                  where $f_o$ is the observed frequency, $f_s$ is the source's emitted frequency, and $v_0$ and $v_s$ are the velocities of the observer and source. These are absolute velocities; they have to be defined with respect to the medium, e.g. the air for a sound wave. Relativity adds a correction to this formula because both the source and the observer will experience time dilation, so we should really have
                  $$gamma_0 f_0 = fracv - v_ov - v_s gamma_s f_s.$$
                  This is a very small correction assuming the speeds are small.



                  When people talk about the relativistic Doppler effect, they usually mean the Doppler effect for light waves specifically, with full relativistic corrections. Light waves are exceptional because they have no medium, so we aren't tied to a specific frame. It's instead more convenient to go to the observer's frame, where we naively have
                  $$f_o = fracc - v_rc f_s$$
                  where $v_r$ is the relative velocity. Relativity corrects this formula in two ways. First, velocities don't quite add linearly, so $v_r neq v_o - v_s$ in general. Second, we have to remember the time dilation factor for the source,
                  $$f_o = fracc - v_rc gamma_s f_s = sqrtfrac1 - v_r/c1 + v_r/c f_s.$$
                  There is no time dilation factor for the observer, because we're in the observer's frame, where they are at rest. This last formula is what people usually call "the relativistic Doppler effect", but again it's pretty close to the nonrelativistic result as long as $v_r ll c$.






                  share|cite|improve this answer











                  $endgroup$



                  The ordinary Doppler effect is independent of relativity; it's basically just a fact of kinematics. It's not even really a wave phenomenon; it also applies to particles. For example, the Doppler effect explains why your car windshield gets wetter faster when you're driving than when you're parked.



                  The formula for the Doppler effect is
                  $$f_o = fracv - v_ov - v_s f_s$$
                  where $f_o$ is the observed frequency, $f_s$ is the source's emitted frequency, and $v_0$ and $v_s$ are the velocities of the observer and source. These are absolute velocities; they have to be defined with respect to the medium, e.g. the air for a sound wave. Relativity adds a correction to this formula because both the source and the observer will experience time dilation, so we should really have
                  $$gamma_0 f_0 = fracv - v_ov - v_s gamma_s f_s.$$
                  This is a very small correction assuming the speeds are small.



                  When people talk about the relativistic Doppler effect, they usually mean the Doppler effect for light waves specifically, with full relativistic corrections. Light waves are exceptional because they have no medium, so we aren't tied to a specific frame. It's instead more convenient to go to the observer's frame, where we naively have
                  $$f_o = fracc - v_rc f_s$$
                  where $v_r$ is the relative velocity. Relativity corrects this formula in two ways. First, velocities don't quite add linearly, so $v_r neq v_o - v_s$ in general. Second, we have to remember the time dilation factor for the source,
                  $$f_o = fracc - v_rc gamma_s f_s = sqrtfrac1 - v_r/c1 + v_r/c f_s.$$
                  There is no time dilation factor for the observer, because we're in the observer's frame, where they are at rest. This last formula is what people usually call "the relativistic Doppler effect", but again it's pretty close to the nonrelativistic result as long as $v_r ll c$.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited 5 hours ago

























                  answered 6 hours ago









                  knzhouknzhou

                  45k11122218




                  45k11122218





















                      2












                      $begingroup$

                      There is a Doppler effect even without Special or General Relativity, just arising from Galilean relative motion. For example, neither of these theories is necessary to explain the fact that the pitch of an ambulance siren changes as it passes by.



                      However, relativity does have to be taken into account when calculating the Doppler effect for a fast-moving object or one in a strong gravitational field. In other words, there are relativistic corrections to the Doppler effect.



                      If you use a Lorentz transformation to derive the Doppler effect, you will get the right answer for any velocity, but you won’t get the Doppler effect for a gravitational field.






                      share|cite|improve this answer











                      $endgroup$

















                        2












                        $begingroup$

                        There is a Doppler effect even without Special or General Relativity, just arising from Galilean relative motion. For example, neither of these theories is necessary to explain the fact that the pitch of an ambulance siren changes as it passes by.



                        However, relativity does have to be taken into account when calculating the Doppler effect for a fast-moving object or one in a strong gravitational field. In other words, there are relativistic corrections to the Doppler effect.



                        If you use a Lorentz transformation to derive the Doppler effect, you will get the right answer for any velocity, but you won’t get the Doppler effect for a gravitational field.






                        share|cite|improve this answer











                        $endgroup$















                          2












                          2








                          2





                          $begingroup$

                          There is a Doppler effect even without Special or General Relativity, just arising from Galilean relative motion. For example, neither of these theories is necessary to explain the fact that the pitch of an ambulance siren changes as it passes by.



                          However, relativity does have to be taken into account when calculating the Doppler effect for a fast-moving object or one in a strong gravitational field. In other words, there are relativistic corrections to the Doppler effect.



                          If you use a Lorentz transformation to derive the Doppler effect, you will get the right answer for any velocity, but you won’t get the Doppler effect for a gravitational field.






                          share|cite|improve this answer











                          $endgroup$



                          There is a Doppler effect even without Special or General Relativity, just arising from Galilean relative motion. For example, neither of these theories is necessary to explain the fact that the pitch of an ambulance siren changes as it passes by.



                          However, relativity does have to be taken into account when calculating the Doppler effect for a fast-moving object or one in a strong gravitational field. In other words, there are relativistic corrections to the Doppler effect.



                          If you use a Lorentz transformation to derive the Doppler effect, you will get the right answer for any velocity, but you won’t get the Doppler effect for a gravitational field.







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited 6 hours ago

























                          answered 6 hours ago









                          G. SmithG. Smith

                          8,98611427




                          8,98611427




















                              jjmontes is a new contributor. Be nice, and check out our Code of Conduct.









                              draft saved

                              draft discarded


















                              jjmontes is a new contributor. Be nice, and check out our Code of Conduct.












                              jjmontes is a new contributor. Be nice, and check out our Code of Conduct.











                              jjmontes is a new contributor. Be nice, and check out our Code of Conduct.














                              Thanks for contributing an answer to Physics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f466848%2fwhat-is-the-relationship-between-relativity-and-the-doppler-effect%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Are there any AGPL-style licences that require source code modifications to be public? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Force derivative works to be publicAre there any GPL like licenses for Apple App Store?Do you violate the GPL if you provide source code that cannot be compiled?GPL - is it distribution to use libraries in an appliance loaned to customers?Distributing App for free which uses GPL'ed codeModifications of server software under GPL, with web/CLI interfaceDoes using an AGPLv3-licensed library prevent me from dual-licensing my own source code?Can I publish only select code under GPLv3 from a private project?Is there published precedent regarding the scope of covered work that uses AGPL software?If MIT licensed code links to GPL licensed code what should be the license of the resulting binary program?If I use a public API endpoint that has its source code licensed under AGPL in my app, do I need to disclose my source?

                              2013 GY136 Descoberta | Órbita | Referências Menu de navegação«List Of Centaurs and Scattered-Disk Objects»«List of Known Trans-Neptunian Objects»

                              Button changing it's text & action. Good or terrible? The 2019 Stack Overflow Developer Survey Results Are Inchanging text on user mouseoverShould certain functions be “hard to find” for powerusers to discover?Custom liking function - do I need user login?Using different checkbox style for different checkbox behaviorBest Practices: Save and Exit in Software UIInteraction with remote validated formMore efficient UI to progress the user through a complicated process?Designing a popup notice for a gameShould bulk-editing functions be hidden until a table row is selected, or is there a better solution?Is it bad practice to disable (replace) the context menu?