How to compute a Jacobian using polar coordinates? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30 pm US/Eastern)How do I convert a vector field in Cartesian coordinates to spherical coordinates?gradient in polar coordinate by changing gradient in Cartesian coordinateJacobian of the change of variablesJacobian Determinant of Polar-Coordinate TransformationPolar coordinates and Jacobian of $frac12 r $Elementary JacobianPartial derivative in polar coordinatesHow do I prove this identity involving polar coordinates and $nabla$?What is the Jacobian in this transformationDoubt about differentia operatorl in polar coordinates

`FindRoot [ ]`::jsing: Encountered a singular Jacobian at a point...WHY

Raising a bilingual kid. When should we introduce the majority language?

Is there an efficient way for synchronising audio events real-time with LEDs using an MCU?

France's Public Holidays' Puzzle

Did war bonds have better investment alternatives during WWII?

"Working on a knee"

Married in secret, can marital status in passport be changed at a later date?

Processing ADC conversion result: DMA vs Processor Registers

Are there existing rules/lore for MTG planeswalkers?

Was there ever a LEGO store in Miami International Airport?

Is a self contained air-bullet cartridge feasible?

/bin/ls sorts differently than just ls

When does Bran Stark remember Jamie pushing him?

How did Elite on the NES work?

Suing a Police Officer Instead of the Police Department

Israeli soda type drink

What is /etc/mtab in Linux?

My admission is revoked after accepting the admission offer

What's the difference between using dependency injection with a container and using a service locator?

Putting Ant-Man on house arrest

What is a 'Key' in computer science?

Is there a way to fake a method response using Mock or Stubs?

What is ls Largest Number Formed by only moving two sticks in 508?

Will I be more secure with my own router behind my ISP's router?



How to compute a Jacobian using polar coordinates?



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30 pm US/Eastern)How do I convert a vector field in Cartesian coordinates to spherical coordinates?gradient in polar coordinate by changing gradient in Cartesian coordinateJacobian of the change of variablesJacobian Determinant of Polar-Coordinate TransformationPolar coordinates and Jacobian of $frac12 r $Elementary JacobianPartial derivative in polar coordinatesHow do I prove this identity involving polar coordinates and $nabla$?What is the Jacobian in this transformationDoubt about differentia operatorl in polar coordinates










5












$begingroup$


Consider the transformation $F$ of $mathbb R^2setminus(0,0)$ onto itself defined as
$$
F(x, y):=left( fracxx^2+y^2, fracyx^2+y^2right).$$

Its Jacobian matrix is
$$tag1
beginbmatrix fracy^2-x^2(x^2+y^2)^2 & -frac2xy(x^2+y^2)^2 \ -frac2xy(x^2+y^2)^2 & fracx^2-y^2(x^2+y^2)^2 endbmatrix,quad textand its determinant equals frac-1(x^2+y^2)^2.$$

The following alternative computation is wrong at (!) and (!!), and I cannot see why.




Let $phicolon (0, infty)times (-pi, pi)to mathbb R^2$ be the map $$phi(r, theta) =(rcos theta, rsin theta).$$ Let moreover $$tag2tildeF:=phi^-1circ Fcirc phi;$$ then, by an easy direct computation, $$tildeF(r, theta)=left( frac1r, thetaright).$$The Jacobian matrix of $tildeF$ is, thus, $$tag!beginbmatrix frac-1r^2 & 0 \ 0 & 1endbmatrix , quad textand its determinant equals frac-1r^2.$$On the other hand, by (2) and by the chain rule, the Jacobian determinants of $F$ and $tildeF$ are equal. We conclude that the Jacobian determinant of $F$ is $$tag!! frac-1r^2=frac-1x^2+y^2.$$




The result (!!) is off by a factor of $r^-2$ from the correct one, which is given in (1). Equation (!) must also be wrong. Indeed, computing the Jacobian matrix from (2) using the chain rule I obtain the result
$$
beginbmatrix fracxsqrtx^2+y^2 & fracysqrtx^2+y^2 \ -fracyx^2+y^2 & fracxx^2+y^2endbmatrix beginbmatrix fracy^2-x^2(x^2+y^2)^2 & -frac2xy(x^2+y^2)^2 \ -frac2xy(x^2+y^2)^2 & fracx^2-y^2(x^2+y^2)^2 endbmatrixbeginbmatrix costheta & -rsintheta \ sin theta & rcos thetaendbmatrix = beginbmatrix -frac1r^2 & 0 \ 0 & frac1r^2endbmatrix,$$

which is different from the matrix in (!), and which gives the correct determinant of $-1/r^4$, as it should be.




Can you help me spot the mistake?











share|cite|improve this question











$endgroup$
















    5












    $begingroup$


    Consider the transformation $F$ of $mathbb R^2setminus(0,0)$ onto itself defined as
    $$
    F(x, y):=left( fracxx^2+y^2, fracyx^2+y^2right).$$

    Its Jacobian matrix is
    $$tag1
    beginbmatrix fracy^2-x^2(x^2+y^2)^2 & -frac2xy(x^2+y^2)^2 \ -frac2xy(x^2+y^2)^2 & fracx^2-y^2(x^2+y^2)^2 endbmatrix,quad textand its determinant equals frac-1(x^2+y^2)^2.$$

    The following alternative computation is wrong at (!) and (!!), and I cannot see why.




    Let $phicolon (0, infty)times (-pi, pi)to mathbb R^2$ be the map $$phi(r, theta) =(rcos theta, rsin theta).$$ Let moreover $$tag2tildeF:=phi^-1circ Fcirc phi;$$ then, by an easy direct computation, $$tildeF(r, theta)=left( frac1r, thetaright).$$The Jacobian matrix of $tildeF$ is, thus, $$tag!beginbmatrix frac-1r^2 & 0 \ 0 & 1endbmatrix , quad textand its determinant equals frac-1r^2.$$On the other hand, by (2) and by the chain rule, the Jacobian determinants of $F$ and $tildeF$ are equal. We conclude that the Jacobian determinant of $F$ is $$tag!! frac-1r^2=frac-1x^2+y^2.$$




    The result (!!) is off by a factor of $r^-2$ from the correct one, which is given in (1). Equation (!) must also be wrong. Indeed, computing the Jacobian matrix from (2) using the chain rule I obtain the result
    $$
    beginbmatrix fracxsqrtx^2+y^2 & fracysqrtx^2+y^2 \ -fracyx^2+y^2 & fracxx^2+y^2endbmatrix beginbmatrix fracy^2-x^2(x^2+y^2)^2 & -frac2xy(x^2+y^2)^2 \ -frac2xy(x^2+y^2)^2 & fracx^2-y^2(x^2+y^2)^2 endbmatrixbeginbmatrix costheta & -rsintheta \ sin theta & rcos thetaendbmatrix = beginbmatrix -frac1r^2 & 0 \ 0 & frac1r^2endbmatrix,$$

    which is different from the matrix in (!), and which gives the correct determinant of $-1/r^4$, as it should be.




    Can you help me spot the mistake?











    share|cite|improve this question











    $endgroup$














      5












      5








      5


      2



      $begingroup$


      Consider the transformation $F$ of $mathbb R^2setminus(0,0)$ onto itself defined as
      $$
      F(x, y):=left( fracxx^2+y^2, fracyx^2+y^2right).$$

      Its Jacobian matrix is
      $$tag1
      beginbmatrix fracy^2-x^2(x^2+y^2)^2 & -frac2xy(x^2+y^2)^2 \ -frac2xy(x^2+y^2)^2 & fracx^2-y^2(x^2+y^2)^2 endbmatrix,quad textand its determinant equals frac-1(x^2+y^2)^2.$$

      The following alternative computation is wrong at (!) and (!!), and I cannot see why.




      Let $phicolon (0, infty)times (-pi, pi)to mathbb R^2$ be the map $$phi(r, theta) =(rcos theta, rsin theta).$$ Let moreover $$tag2tildeF:=phi^-1circ Fcirc phi;$$ then, by an easy direct computation, $$tildeF(r, theta)=left( frac1r, thetaright).$$The Jacobian matrix of $tildeF$ is, thus, $$tag!beginbmatrix frac-1r^2 & 0 \ 0 & 1endbmatrix , quad textand its determinant equals frac-1r^2.$$On the other hand, by (2) and by the chain rule, the Jacobian determinants of $F$ and $tildeF$ are equal. We conclude that the Jacobian determinant of $F$ is $$tag!! frac-1r^2=frac-1x^2+y^2.$$




      The result (!!) is off by a factor of $r^-2$ from the correct one, which is given in (1). Equation (!) must also be wrong. Indeed, computing the Jacobian matrix from (2) using the chain rule I obtain the result
      $$
      beginbmatrix fracxsqrtx^2+y^2 & fracysqrtx^2+y^2 \ -fracyx^2+y^2 & fracxx^2+y^2endbmatrix beginbmatrix fracy^2-x^2(x^2+y^2)^2 & -frac2xy(x^2+y^2)^2 \ -frac2xy(x^2+y^2)^2 & fracx^2-y^2(x^2+y^2)^2 endbmatrixbeginbmatrix costheta & -rsintheta \ sin theta & rcos thetaendbmatrix = beginbmatrix -frac1r^2 & 0 \ 0 & frac1r^2endbmatrix,$$

      which is different from the matrix in (!), and which gives the correct determinant of $-1/r^4$, as it should be.




      Can you help me spot the mistake?











      share|cite|improve this question











      $endgroup$




      Consider the transformation $F$ of $mathbb R^2setminus(0,0)$ onto itself defined as
      $$
      F(x, y):=left( fracxx^2+y^2, fracyx^2+y^2right).$$

      Its Jacobian matrix is
      $$tag1
      beginbmatrix fracy^2-x^2(x^2+y^2)^2 & -frac2xy(x^2+y^2)^2 \ -frac2xy(x^2+y^2)^2 & fracx^2-y^2(x^2+y^2)^2 endbmatrix,quad textand its determinant equals frac-1(x^2+y^2)^2.$$

      The following alternative computation is wrong at (!) and (!!), and I cannot see why.




      Let $phicolon (0, infty)times (-pi, pi)to mathbb R^2$ be the map $$phi(r, theta) =(rcos theta, rsin theta).$$ Let moreover $$tag2tildeF:=phi^-1circ Fcirc phi;$$ then, by an easy direct computation, $$tildeF(r, theta)=left( frac1r, thetaright).$$The Jacobian matrix of $tildeF$ is, thus, $$tag!beginbmatrix frac-1r^2 & 0 \ 0 & 1endbmatrix , quad textand its determinant equals frac-1r^2.$$On the other hand, by (2) and by the chain rule, the Jacobian determinants of $F$ and $tildeF$ are equal. We conclude that the Jacobian determinant of $F$ is $$tag!! frac-1r^2=frac-1x^2+y^2.$$




      The result (!!) is off by a factor of $r^-2$ from the correct one, which is given in (1). Equation (!) must also be wrong. Indeed, computing the Jacobian matrix from (2) using the chain rule I obtain the result
      $$
      beginbmatrix fracxsqrtx^2+y^2 & fracysqrtx^2+y^2 \ -fracyx^2+y^2 & fracxx^2+y^2endbmatrix beginbmatrix fracy^2-x^2(x^2+y^2)^2 & -frac2xy(x^2+y^2)^2 \ -frac2xy(x^2+y^2)^2 & fracx^2-y^2(x^2+y^2)^2 endbmatrixbeginbmatrix costheta & -rsintheta \ sin theta & rcos thetaendbmatrix = beginbmatrix -frac1r^2 & 0 \ 0 & frac1r^2endbmatrix,$$

      which is different from the matrix in (!), and which gives the correct determinant of $-1/r^4$, as it should be.




      Can you help me spot the mistake?








      calculus multivariable-calculus differential-geometry






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 2 hours ago









      Tengu

      2,68411021




      2,68411021










      asked 3 hours ago









      Giuseppe NegroGiuseppe Negro

      17.7k332128




      17.7k332128




















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          The Jacobians of the two functions aren't equal by the chain rule.



          In actual fact, $D(phi(frac1r, costheta)) × DtildeF(r, theta)= DF times D(phi(r, theta))$






          share|cite|improve this answer









          $endgroup$




















            2












            $begingroup$

            I don't think there is any contradiction here.



            Consider the volume form
            $$ omega_rm Cart = dx wedge dy.$$
            Your first calculation shows that the pullback $F^star(omega_rm Cart)$ is given by
            $$ F^star(omega_rm Cart) = - frac1(x^2+y^2)^2omega_rm Cart.$$



            Now consider the volume form
            $$ omega_rm Polar = dr wedge dtheta.$$
            Your second calculation shows that



            $$ F^star(omega_rm Polar)=-frac 1 r^2 omega_rm Polar. $$



            We can use this to recompute $F^star(omega_rm Cart)$. In view of the fact that
            $$ omega_rm Cart = r omega_rm Polar,$$
            we have:
            beginalign
            F^star(omega_rm Cart) &= F^star(romega_rm Polar) \ &= F^star(r) F^star(omega_rm Polar) \ &= frac 1 r left( - frac 1 r^2omega_rm Polar right) \ &= - frac1r^4 left(romega_rm Polar right) \ &= - frac 1 r^4 omega_rm Cart
            endalign

            which is consistent with the first calculation!




            As for the application of the chain rule, we have:
            $$ (Dbar F)|_(r, theta) = D(phi^-1)|_Fcirc phi(r, theta) (DF)|_phi(r, theta) (Dphi)|_(r, theta)$$



            The key point is that you must evaluate $D(phi^-1)$ at the point $left(frac x (x^2 +y^2), frac y (x^2 + y^2)right)$, not at the point $(x, y)$.



            This is equal to



            $$ D(phi^-1)|_Fcirc phi(r, theta) = beginbmatrix fracfracxx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracyx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 \ -fracfracyx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracxx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2endbmatrix = beginbmatrixcostheta & sin theta \ - rsin theta & rcostheta endbmatrix$$
            which is not the inverse of $(Dphi)|_(r, theta)$.






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              I couldn't expect a better answer. You nailed it completely. Also, thank you for suggesting the viewpoint of volume forms; that makes for much slicker computations.
              $endgroup$
              – Giuseppe Negro
              1 hour ago











            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3198750%2fhow-to-compute-a-jacobian-using-polar-coordinates%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            The Jacobians of the two functions aren't equal by the chain rule.



            In actual fact, $D(phi(frac1r, costheta)) × DtildeF(r, theta)= DF times D(phi(r, theta))$






            share|cite|improve this answer









            $endgroup$

















              2












              $begingroup$

              The Jacobians of the two functions aren't equal by the chain rule.



              In actual fact, $D(phi(frac1r, costheta)) × DtildeF(r, theta)= DF times D(phi(r, theta))$






              share|cite|improve this answer









              $endgroup$















                2












                2








                2





                $begingroup$

                The Jacobians of the two functions aren't equal by the chain rule.



                In actual fact, $D(phi(frac1r, costheta)) × DtildeF(r, theta)= DF times D(phi(r, theta))$






                share|cite|improve this answer









                $endgroup$



                The Jacobians of the two functions aren't equal by the chain rule.



                In actual fact, $D(phi(frac1r, costheta)) × DtildeF(r, theta)= DF times D(phi(r, theta))$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 2 hours ago









                George DewhirstGeorge Dewhirst

                1,72515




                1,72515





















                    2












                    $begingroup$

                    I don't think there is any contradiction here.



                    Consider the volume form
                    $$ omega_rm Cart = dx wedge dy.$$
                    Your first calculation shows that the pullback $F^star(omega_rm Cart)$ is given by
                    $$ F^star(omega_rm Cart) = - frac1(x^2+y^2)^2omega_rm Cart.$$



                    Now consider the volume form
                    $$ omega_rm Polar = dr wedge dtheta.$$
                    Your second calculation shows that



                    $$ F^star(omega_rm Polar)=-frac 1 r^2 omega_rm Polar. $$



                    We can use this to recompute $F^star(omega_rm Cart)$. In view of the fact that
                    $$ omega_rm Cart = r omega_rm Polar,$$
                    we have:
                    beginalign
                    F^star(omega_rm Cart) &= F^star(romega_rm Polar) \ &= F^star(r) F^star(omega_rm Polar) \ &= frac 1 r left( - frac 1 r^2omega_rm Polar right) \ &= - frac1r^4 left(romega_rm Polar right) \ &= - frac 1 r^4 omega_rm Cart
                    endalign

                    which is consistent with the first calculation!




                    As for the application of the chain rule, we have:
                    $$ (Dbar F)|_(r, theta) = D(phi^-1)|_Fcirc phi(r, theta) (DF)|_phi(r, theta) (Dphi)|_(r, theta)$$



                    The key point is that you must evaluate $D(phi^-1)$ at the point $left(frac x (x^2 +y^2), frac y (x^2 + y^2)right)$, not at the point $(x, y)$.



                    This is equal to



                    $$ D(phi^-1)|_Fcirc phi(r, theta) = beginbmatrix fracfracxx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracyx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 \ -fracfracyx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracxx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2endbmatrix = beginbmatrixcostheta & sin theta \ - rsin theta & rcostheta endbmatrix$$
                    which is not the inverse of $(Dphi)|_(r, theta)$.






                    share|cite|improve this answer











                    $endgroup$












                    • $begingroup$
                      I couldn't expect a better answer. You nailed it completely. Also, thank you for suggesting the viewpoint of volume forms; that makes for much slicker computations.
                      $endgroup$
                      – Giuseppe Negro
                      1 hour ago















                    2












                    $begingroup$

                    I don't think there is any contradiction here.



                    Consider the volume form
                    $$ omega_rm Cart = dx wedge dy.$$
                    Your first calculation shows that the pullback $F^star(omega_rm Cart)$ is given by
                    $$ F^star(omega_rm Cart) = - frac1(x^2+y^2)^2omega_rm Cart.$$



                    Now consider the volume form
                    $$ omega_rm Polar = dr wedge dtheta.$$
                    Your second calculation shows that



                    $$ F^star(omega_rm Polar)=-frac 1 r^2 omega_rm Polar. $$



                    We can use this to recompute $F^star(omega_rm Cart)$. In view of the fact that
                    $$ omega_rm Cart = r omega_rm Polar,$$
                    we have:
                    beginalign
                    F^star(omega_rm Cart) &= F^star(romega_rm Polar) \ &= F^star(r) F^star(omega_rm Polar) \ &= frac 1 r left( - frac 1 r^2omega_rm Polar right) \ &= - frac1r^4 left(romega_rm Polar right) \ &= - frac 1 r^4 omega_rm Cart
                    endalign

                    which is consistent with the first calculation!




                    As for the application of the chain rule, we have:
                    $$ (Dbar F)|_(r, theta) = D(phi^-1)|_Fcirc phi(r, theta) (DF)|_phi(r, theta) (Dphi)|_(r, theta)$$



                    The key point is that you must evaluate $D(phi^-1)$ at the point $left(frac x (x^2 +y^2), frac y (x^2 + y^2)right)$, not at the point $(x, y)$.



                    This is equal to



                    $$ D(phi^-1)|_Fcirc phi(r, theta) = beginbmatrix fracfracxx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracyx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 \ -fracfracyx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracxx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2endbmatrix = beginbmatrixcostheta & sin theta \ - rsin theta & rcostheta endbmatrix$$
                    which is not the inverse of $(Dphi)|_(r, theta)$.






                    share|cite|improve this answer











                    $endgroup$












                    • $begingroup$
                      I couldn't expect a better answer. You nailed it completely. Also, thank you for suggesting the viewpoint of volume forms; that makes for much slicker computations.
                      $endgroup$
                      – Giuseppe Negro
                      1 hour ago













                    2












                    2








                    2





                    $begingroup$

                    I don't think there is any contradiction here.



                    Consider the volume form
                    $$ omega_rm Cart = dx wedge dy.$$
                    Your first calculation shows that the pullback $F^star(omega_rm Cart)$ is given by
                    $$ F^star(omega_rm Cart) = - frac1(x^2+y^2)^2omega_rm Cart.$$



                    Now consider the volume form
                    $$ omega_rm Polar = dr wedge dtheta.$$
                    Your second calculation shows that



                    $$ F^star(omega_rm Polar)=-frac 1 r^2 omega_rm Polar. $$



                    We can use this to recompute $F^star(omega_rm Cart)$. In view of the fact that
                    $$ omega_rm Cart = r omega_rm Polar,$$
                    we have:
                    beginalign
                    F^star(omega_rm Cart) &= F^star(romega_rm Polar) \ &= F^star(r) F^star(omega_rm Polar) \ &= frac 1 r left( - frac 1 r^2omega_rm Polar right) \ &= - frac1r^4 left(romega_rm Polar right) \ &= - frac 1 r^4 omega_rm Cart
                    endalign

                    which is consistent with the first calculation!




                    As for the application of the chain rule, we have:
                    $$ (Dbar F)|_(r, theta) = D(phi^-1)|_Fcirc phi(r, theta) (DF)|_phi(r, theta) (Dphi)|_(r, theta)$$



                    The key point is that you must evaluate $D(phi^-1)$ at the point $left(frac x (x^2 +y^2), frac y (x^2 + y^2)right)$, not at the point $(x, y)$.



                    This is equal to



                    $$ D(phi^-1)|_Fcirc phi(r, theta) = beginbmatrix fracfracxx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracyx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 \ -fracfracyx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracxx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2endbmatrix = beginbmatrixcostheta & sin theta \ - rsin theta & rcostheta endbmatrix$$
                    which is not the inverse of $(Dphi)|_(r, theta)$.






                    share|cite|improve this answer











                    $endgroup$



                    I don't think there is any contradiction here.



                    Consider the volume form
                    $$ omega_rm Cart = dx wedge dy.$$
                    Your first calculation shows that the pullback $F^star(omega_rm Cart)$ is given by
                    $$ F^star(omega_rm Cart) = - frac1(x^2+y^2)^2omega_rm Cart.$$



                    Now consider the volume form
                    $$ omega_rm Polar = dr wedge dtheta.$$
                    Your second calculation shows that



                    $$ F^star(omega_rm Polar)=-frac 1 r^2 omega_rm Polar. $$



                    We can use this to recompute $F^star(omega_rm Cart)$. In view of the fact that
                    $$ omega_rm Cart = r omega_rm Polar,$$
                    we have:
                    beginalign
                    F^star(omega_rm Cart) &= F^star(romega_rm Polar) \ &= F^star(r) F^star(omega_rm Polar) \ &= frac 1 r left( - frac 1 r^2omega_rm Polar right) \ &= - frac1r^4 left(romega_rm Polar right) \ &= - frac 1 r^4 omega_rm Cart
                    endalign

                    which is consistent with the first calculation!




                    As for the application of the chain rule, we have:
                    $$ (Dbar F)|_(r, theta) = D(phi^-1)|_Fcirc phi(r, theta) (DF)|_phi(r, theta) (Dphi)|_(r, theta)$$



                    The key point is that you must evaluate $D(phi^-1)$ at the point $left(frac x (x^2 +y^2), frac y (x^2 + y^2)right)$, not at the point $(x, y)$.



                    This is equal to



                    $$ D(phi^-1)|_Fcirc phi(r, theta) = beginbmatrix fracfracxx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracyx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 \ -fracfracyx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracxx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2endbmatrix = beginbmatrixcostheta & sin theta \ - rsin theta & rcostheta endbmatrix$$
                    which is not the inverse of $(Dphi)|_(r, theta)$.







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited 2 hours ago

























                    answered 2 hours ago









                    Kenny WongKenny Wong

                    20.1k21442




                    20.1k21442











                    • $begingroup$
                      I couldn't expect a better answer. You nailed it completely. Also, thank you for suggesting the viewpoint of volume forms; that makes for much slicker computations.
                      $endgroup$
                      – Giuseppe Negro
                      1 hour ago
















                    • $begingroup$
                      I couldn't expect a better answer. You nailed it completely. Also, thank you for suggesting the viewpoint of volume forms; that makes for much slicker computations.
                      $endgroup$
                      – Giuseppe Negro
                      1 hour ago















                    $begingroup$
                    I couldn't expect a better answer. You nailed it completely. Also, thank you for suggesting the viewpoint of volume forms; that makes for much slicker computations.
                    $endgroup$
                    – Giuseppe Negro
                    1 hour ago




                    $begingroup$
                    I couldn't expect a better answer. You nailed it completely. Also, thank you for suggesting the viewpoint of volume forms; that makes for much slicker computations.
                    $endgroup$
                    – Giuseppe Negro
                    1 hour ago

















                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3198750%2fhow-to-compute-a-jacobian-using-polar-coordinates%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Are there any AGPL-style licences that require source code modifications to be public? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Force derivative works to be publicAre there any GPL like licenses for Apple App Store?Do you violate the GPL if you provide source code that cannot be compiled?GPL - is it distribution to use libraries in an appliance loaned to customers?Distributing App for free which uses GPL'ed codeModifications of server software under GPL, with web/CLI interfaceDoes using an AGPLv3-licensed library prevent me from dual-licensing my own source code?Can I publish only select code under GPLv3 from a private project?Is there published precedent regarding the scope of covered work that uses AGPL software?If MIT licensed code links to GPL licensed code what should be the license of the resulting binary program?If I use a public API endpoint that has its source code licensed under AGPL in my app, do I need to disclose my source?

                    2013 GY136 Descoberta | Órbita | Referências Menu de navegação«List Of Centaurs and Scattered-Disk Objects»«List of Known Trans-Neptunian Objects»

                    Metrô de Los Teques Índice Linhas | Estações | Ver também | Referências Ligações externas | Menu de navegação«INSTITUCIÓN»«Mapa de rutas»originalMetrô de Los TequesC.A. Metro Los Teques |Alcaldía de Guaicaipuro – Sitio OficialGobernacion de Mirandaeeeeeee