Did the new image of black hole confirm the general theory of relativity? The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Why isn't the circumferential light around the M87 black hole's event horizon symmetric?How can Quasars emit anything if they're black holes?How can cosmic jets exist?How did the first image of a black hole test the general relativity?Does GR provide a maximum electric field limit?From where (in space-time) does Hawking radiation originate?Falling into a black holeIf nothing in the universe can travel faster than light, how come light can't escape a black hole?Does cosmic censorship rule out stable toroidal black holes? How?Connection between the Big Bang and Black HolesHow to obtain initial conditions to image Kerr black hole?Observer inside event horizon of an extremely large black holeBased on our current observations, what all prevents a formed black from experiencing a repulsive force to overcome its gravitational force…?How did the first image of a black hole test the general relativity?

Why can I use a list index as an indexing variable in a for loop?

Would an alien lifeform be able to achieve space travel if lacking in vision?

Solving overdetermined system by QR decomposition

Why doesn't a hydraulic lever violate conservation of energy?

Why are PDP-7-style microprogrammed instructions out of vogue?

"... to apply for a visa" or "... and applied for a visa"?

Word for: a synonym with a positive connotation?

How to politely respond to generic emails requesting a PhD/job in my lab? Without wasting too much time

What does Linus Torvalds mean when he says that Git "never ever" tracks a file?

Accepted by European university, rejected by all American ones I applied to? Possible reasons?

Drawing vertical/oblique lines in Metrical tree (tikz-qtree, tipa)

How to make Illustrator type tool selection automatically adapt with text length

Why are Marketing Cloud timestamps not stored in the same timezone as Sales Cloud?

How do you keep chess fun when your opponent constantly beats you?

ELI5: Why do they say that Israel would have been the fourth country to land a spacecraft on the Moon and why do they call it low cost?

Windows 10: How to Lock (not sleep) laptop on lid close?

Does Parliament hold absolute power in the UK?

Why can't wing-mounted spoilers be used to steepen approaches?

Single author papers against my advisor's will?

Can the DM override racial traits?

How to substitute curly brackets with round brackets in a grid of list

Can withdrawing asylum be illegal?

Is an up-to-date browser secure on an out-of-date OS?

What was the last x86 CPU that did not have the x87 floating-point unit built in?



Did the new image of black hole confirm the general theory of relativity?



The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Why isn't the circumferential light around the M87 black hole's event horizon symmetric?How can Quasars emit anything if they're black holes?How can cosmic jets exist?How did the first image of a black hole test the general relativity?Does GR provide a maximum electric field limit?From where (in space-time) does Hawking radiation originate?Falling into a black holeIf nothing in the universe can travel faster than light, how come light can't escape a black hole?Does cosmic censorship rule out stable toroidal black holes? How?Connection between the Big Bang and Black HolesHow to obtain initial conditions to image Kerr black hole?Observer inside event horizon of an extremely large black holeBased on our current observations, what all prevents a formed black from experiencing a repulsive force to overcome its gravitational force…?How did the first image of a black hole test the general relativity?










8












$begingroup$


How can we do it just by looking at the image. But I heard in news saying "Einstein was right! black hole image confirms GTR. The image is so less detailed that I can't even make some pretty good points. Please correct me if I'm wrong on any aspect. Please provide a link if this question sounds duplicate.










share|cite|improve this question











$endgroup$







  • 3




    $begingroup$
    Read the science explained at the official website; it should answer your questions: eventhorizontelescope.org/science. News is not the best place to go to for science.
    $endgroup$
    – Avantgarde
    2 hours ago






  • 1




    $begingroup$
    Re, "...just by looking at the image." You can't learn much just by looking at that image. But if you use the theory to predict what the picture should look like, and then you take the picture and it agrees with your prediction, then that ought to boost your confidence in the theory.
    $endgroup$
    – Solomon Slow
    1 hour ago















8












$begingroup$


How can we do it just by looking at the image. But I heard in news saying "Einstein was right! black hole image confirms GTR. The image is so less detailed that I can't even make some pretty good points. Please correct me if I'm wrong on any aspect. Please provide a link if this question sounds duplicate.










share|cite|improve this question











$endgroup$







  • 3




    $begingroup$
    Read the science explained at the official website; it should answer your questions: eventhorizontelescope.org/science. News is not the best place to go to for science.
    $endgroup$
    – Avantgarde
    2 hours ago






  • 1




    $begingroup$
    Re, "...just by looking at the image." You can't learn much just by looking at that image. But if you use the theory to predict what the picture should look like, and then you take the picture and it agrees with your prediction, then that ought to boost your confidence in the theory.
    $endgroup$
    – Solomon Slow
    1 hour ago













8












8








8


2



$begingroup$


How can we do it just by looking at the image. But I heard in news saying "Einstein was right! black hole image confirms GTR. The image is so less detailed that I can't even make some pretty good points. Please correct me if I'm wrong on any aspect. Please provide a link if this question sounds duplicate.










share|cite|improve this question











$endgroup$




How can we do it just by looking at the image. But I heard in news saying "Einstein was right! black hole image confirms GTR. The image is so less detailed that I can't even make some pretty good points. Please correct me if I'm wrong on any aspect. Please provide a link if this question sounds duplicate.







general-relativity black-holes astronomy






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 3 hours ago







Liquid

















asked 3 hours ago









LiquidLiquid

412




412







  • 3




    $begingroup$
    Read the science explained at the official website; it should answer your questions: eventhorizontelescope.org/science. News is not the best place to go to for science.
    $endgroup$
    – Avantgarde
    2 hours ago






  • 1




    $begingroup$
    Re, "...just by looking at the image." You can't learn much just by looking at that image. But if you use the theory to predict what the picture should look like, and then you take the picture and it agrees with your prediction, then that ought to boost your confidence in the theory.
    $endgroup$
    – Solomon Slow
    1 hour ago












  • 3




    $begingroup$
    Read the science explained at the official website; it should answer your questions: eventhorizontelescope.org/science. News is not the best place to go to for science.
    $endgroup$
    – Avantgarde
    2 hours ago






  • 1




    $begingroup$
    Re, "...just by looking at the image." You can't learn much just by looking at that image. But if you use the theory to predict what the picture should look like, and then you take the picture and it agrees with your prediction, then that ought to boost your confidence in the theory.
    $endgroup$
    – Solomon Slow
    1 hour ago







3




3




$begingroup$
Read the science explained at the official website; it should answer your questions: eventhorizontelescope.org/science. News is not the best place to go to for science.
$endgroup$
– Avantgarde
2 hours ago




$begingroup$
Read the science explained at the official website; it should answer your questions: eventhorizontelescope.org/science. News is not the best place to go to for science.
$endgroup$
– Avantgarde
2 hours ago




1




1




$begingroup$
Re, "...just by looking at the image." You can't learn much just by looking at that image. But if you use the theory to predict what the picture should look like, and then you take the picture and it agrees with your prediction, then that ought to boost your confidence in the theory.
$endgroup$
– Solomon Slow
1 hour ago




$begingroup$
Re, "...just by looking at the image." You can't learn much just by looking at that image. But if you use the theory to predict what the picture should look like, and then you take the picture and it agrees with your prediction, then that ought to boost your confidence in the theory.
$endgroup$
– Solomon Slow
1 hour ago










3 Answers
3






active

oldest

votes


















7












$begingroup$

I think it's fair to say that the EHT image definitely is consistent with GR, and so GR continues to agree with experimental data so far. The leading paper in the 10th April 2019 issue of Astrophysical Journal letters says (first sentence of the 'Discussion' section):




A number of elements reinforce the robustness of our image and the conclusion that it is consistent with the shadow of a black hole as predicted by GR.




I'm unhappy about the notion that this 'confirms' GR: it would be more correct to say that GR has not been shown to be wrong by this observation: nothing can definitively confirm a theory, which can only be shown to agree with experimental data so far. This might depend on your definition of 'confirm' I suppose however: I'm taking it to mean 'shown to be correct', and it's that meaning I object to. In particular it is clearly not the case that this shows 'Einstein was right': it shows that GR agrees with experiment (extremely well!) so far, and this and LIGO both show (or are showing) that GR agrees with experiment in regions where the gravitational field is strong.






share|cite|improve this answer









$endgroup$




















    5












    $begingroup$

    If you google "m87 and general relativity" you get a list and videos on confirmation.



    This is an exaggerated response to an interesting "photograph", because it looks just like what has been calculated using the theory of general relativity for black holes.



    General relativity has been confirmed by many cosmological observations, including the calculations for the GPS signal and black holes were proposed within the framework of General relativity by Karl Schwarzschild . It is very interesting that the image developed exactly in the topology predicted by the GR equations, but the validation of GR did not really depend on this. (If a funny topology not predicted had been seen it would actually be more interesting because it would have to be modeled by something more complicated than a Kerr black hole., and maybe a modification to GR might have been proposed) .



    So the image is consistent with the expectation of a Kerr black hole, and in this sense it validates General Relativity.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      Anna thank you . But if say so , you mean GR is what final theory of gravity or is it simply the best of we have explaining everything that come ahead. But I have very acute problem knowing why didn't he tell us about why exactly space curves
      $endgroup$
      – Liquid
      2 hours ago






    • 4




      $begingroup$
      GR is the theory that fits our observations up to now. There are theorists trying to propose modification to GR. Well, in physics we cannot answer "Why" questions, but "how" from certain postulates using some equations we can fit observations. The "why these postulates and equations" belongs to metaphysics, not physics. Einstein was a physicist.
      $endgroup$
      – anna v
      2 hours ago










    • $begingroup$
      @annav: I think the kind of "why" Liquid was talking about is less a matter of metaphysics and more in the sense of "why do these two pieces of iron seem to attract one another?"
      $endgroup$
      – Nicol Bolas
      52 mins ago


















    0












    $begingroup$

    Answer: Yes, the images from the Event Horizon Telescope (EHT) are consistent with what general relativity predicts.



    To be clear about what this statement means, we need to remember how science works. Theories are inspired by observations, but theories are not deduced from observations. It's the other way around: theories make predictions. If the predictions consistently match what we observe, then we say that the theory works. Of course, contriving a theory that makes one prediction that matches one observation is trivial. Finding a theory that makes many predictions that match many observations is more challenging. General relativity is such a theory, and its agreement with this new observation — the images from the Event Horizon Telescope — is a nice addition to the large portfolio of general relativity's confirmed predictions.



    Even though the black hole is enormous, it is so far away that the diameter of the imaged ring spans less than $20$ billionths of a degree ($<20times 10^-9$ degree) in the sky, so pristine resolution cannot be expected; the fact that they were able to resolve it at all is remarkable. Still, the image shows some general features that are consistent with what is expected for a rapidly spinning black hole in general relativity — not just any rapidly spinning black hole, but one whose size, mass, spin, and orientation are all consistent with other observations associated with that same black hole in the core of the galaxy M87.



    A few of these observations are reviewed below, followed by comments on how the EHT images compare to predictions from general relativity.




    Other observations: The jet



    One of the most prominent associated observations is the jet emanating from the galaxy's core, shown here in images from the Hubble Space Telescope [$2$]:



    enter image description here



    To give a feeling for the scale of this picture, this is what hubblesite.org [$3$] says about the image:




    At a distance of 50 million light-years, M87 is too distant for Hubble to discern individual stars. The dozens of star-like points swarming about M87 are, instead, themselves clusters of hundreds of thousands of stars each.




    Here's another view of the jet, with scale-bars:



    enter image description here



    This image (from figure 2 in [$4$]) was made in 1999 using VLBI observations at a wavelength of 7 millimeters. The white dot marked $6r_S$ represents a circle with a diameter of $6$ times the alleged Schwarzschild radius. The scale bar marked "$1$ kpc" represents one kiloparsec, which is roughly 3000 light-years.



    According to general relativity, a rapidly spinning black hole with an accretion disk can generate intense magnetic fields (but see [$5$]) that funnel material from the accreting plasma into a jet emanating along the black hole's axis of rotation. The fact that the observed jet is so straight over a distance of thousands of light-years implies that it must be produced by an engine that maintains a very consistent orientation for a time span of at least thousands of years, as a supermassive black hole is expected to do.




    Other observations: The accretion disk



    According to [$6$]:




    HST [Hubble Space Telescope] imaged a disk of ionized gas, with a radius of $sim$ 50 pc [50 parsecs, roughly 150 light-years] centered on the galactic core... The high resolution of HST allowed the spectrum [which is sensitive to the Doppler effect] of this ionized gas to be measured as a function of position across the gas disk, thereby allowing the kinematics of the disk to be determined... It was found that the velocity profile of the central 20 pc of the gas disk possessed a Keplerian profile (i.e., $v propto r^-1/2$) as expected if the gas was orbiting in the gravitational potential of a point-like mass... The only known and long-lived object to possess such a large mass in a small region of space, and be as under-luminous as observed, is a SMBH [Super-Massive Black Hole].




    In other words, these observations showed evidence for gas disk with the velocity profile that would be expected if it were orbiting a supermassive black hole. Note that the measured gas velocities on opposite sides of the central body differ from each other by roughly 1000 kilometers per second.




    Other observations: The absense of strong surface emission



    According to a report [$7$] published in 2015:




    Observations at millimeter wavelengths with the Event Horizon Telescope have localized the emission from the base of this jet [shown above] to angular scales comparable to the putative black hole horizon. The jet might be powered directly by an accretion disk or by electromagnetic extraction of the rotational energy of the black hole. However, even the latter mechanism requires a confining thick accretion disk to maintain the required magnetic flux near the black hole. Therefore, regardless of the jet mechanism, the observed jet power in M87 implies a certain minimum mass accretion rate. If the central compact object in M87 were not a black hole but had a surface, this accretion would result in considerable thermal near-infrared and optical emission from the surface. Current flux limits on the nucleus of M87 strongly constrain any such surface emission. This rules out the presence of a surface and thereby provides indirect evidence for an event horizon.




    Regarding why the event horizon of a black hole is expected to be so dim even though the intense fields generate a powerful jet, see these Physics SE posts:



    • How can Quasars emit anything if they're black holes?


    • How can cosmic jets exist?



    Comparing the EHT images to predictions



    Page 5 in the first event horizon telescope paper (L$1$ in [$1$]) says:




    The appearance of M87* has been modeled successfully using GRMHD [general-relativistic magnetohydrodynamics] simulations, which describe a turbulent, hot, magnetized disk orbiting a Kerr black hole. They naturally produce a powerful jet and can explain the broadband spectral energy distribution observed in LLAGNs. At a wavelength of 1.3mm, and as observed here, the simulations also predict a shadow and an asymmetric emission ring.




    Page 6 says:




    ...adopting an inclination of $17^circ$ between the approaching jet and the line of sight..., the west orientation of the jet, and a corotating disk model, matter in the bottom part of the image is moving toward the observer (clockwise rotation as seen from Earth). This is consistent with the rotation of the ionized gas on scales of 20 pc [20 parsecs, roughly 60 light-years], i.e., 7000 $r_g$ ["where $r_gequiv GM/c^2$ is the characteristic lengthscale of a black hole"]... and with the inferred sense of rotation from VLBI observations at 7 mm...




    These excerpts say that when using black-hole parameters consistent with other observations, general relativity can predict the features of the images observed by the EHT. These features, including the reduced brightness in the center and the asymmetry of the brightness of the ring, with an orientation consistent with the observed jet, are hallmarks of a rapidly spinning black hole. In this sense, the images from the Event Horizon Telescope (EHT) do confirm general relativity.



    The comparisons between general relativity's predictions and the observed images are described in detail in the fifth event horizon telescope paper (L$5$ in [$1$]), and some of them have already been reviewed on Physics SE:



    • Why isn't the circumferential light around the M87 black hole's event horizon symmetric?


    References:



    [$1$] https://iopscience.iop.org/issue/2041-8205/875/1, Table of contents of The Astrophysical Journal Letters, volume 875, number 1 (2019 April 10), with six downloadable articles (L$1$ thorugh L$6$)



    [$2$] https://www.nasa.gov/feature/goddard/2017/messier-87



    [$3$] "Black Hole-Powered Jet of Electrons and Sub-Atomic Particles Streams From Center of Galaxy M87," http://hubblesite.org/image/968/news_release/2000-20



    [$4$] "Formation of the radio jet in M87 at 100 Schwarzschild radii from the central black hole," Nature 401, 891-892 (1999), https://www.nature.com/articles/44780



    [$5$] "A precise measurement of the magnetic field in the corona of the black hole binary V404 Cygni," Science 358: 1299-1302 (2017), https://science.sciencemag.org/content/358/6368/1299



    [$6$] "Fluorescent iron lines as a probe of astrophysical black hole systems," https://arxiv.org/abs/astro-ph/0212065



    [$7$] Broderick et al, "The Event Horizon of M87," https://arxiv.org/abs/1503.03873






    share|cite|improve this answer









    $endgroup$













      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "151"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f472323%2fdid-the-new-image-of-black-hole-confirm-the-general-theory-of-relativity%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      7












      $begingroup$

      I think it's fair to say that the EHT image definitely is consistent with GR, and so GR continues to agree with experimental data so far. The leading paper in the 10th April 2019 issue of Astrophysical Journal letters says (first sentence of the 'Discussion' section):




      A number of elements reinforce the robustness of our image and the conclusion that it is consistent with the shadow of a black hole as predicted by GR.




      I'm unhappy about the notion that this 'confirms' GR: it would be more correct to say that GR has not been shown to be wrong by this observation: nothing can definitively confirm a theory, which can only be shown to agree with experimental data so far. This might depend on your definition of 'confirm' I suppose however: I'm taking it to mean 'shown to be correct', and it's that meaning I object to. In particular it is clearly not the case that this shows 'Einstein was right': it shows that GR agrees with experiment (extremely well!) so far, and this and LIGO both show (or are showing) that GR agrees with experiment in regions where the gravitational field is strong.






      share|cite|improve this answer









      $endgroup$

















        7












        $begingroup$

        I think it's fair to say that the EHT image definitely is consistent with GR, and so GR continues to agree with experimental data so far. The leading paper in the 10th April 2019 issue of Astrophysical Journal letters says (first sentence of the 'Discussion' section):




        A number of elements reinforce the robustness of our image and the conclusion that it is consistent with the shadow of a black hole as predicted by GR.




        I'm unhappy about the notion that this 'confirms' GR: it would be more correct to say that GR has not been shown to be wrong by this observation: nothing can definitively confirm a theory, which can only be shown to agree with experimental data so far. This might depend on your definition of 'confirm' I suppose however: I'm taking it to mean 'shown to be correct', and it's that meaning I object to. In particular it is clearly not the case that this shows 'Einstein was right': it shows that GR agrees with experiment (extremely well!) so far, and this and LIGO both show (or are showing) that GR agrees with experiment in regions where the gravitational field is strong.






        share|cite|improve this answer









        $endgroup$















          7












          7








          7





          $begingroup$

          I think it's fair to say that the EHT image definitely is consistent with GR, and so GR continues to agree with experimental data so far. The leading paper in the 10th April 2019 issue of Astrophysical Journal letters says (first sentence of the 'Discussion' section):




          A number of elements reinforce the robustness of our image and the conclusion that it is consistent with the shadow of a black hole as predicted by GR.




          I'm unhappy about the notion that this 'confirms' GR: it would be more correct to say that GR has not been shown to be wrong by this observation: nothing can definitively confirm a theory, which can only be shown to agree with experimental data so far. This might depend on your definition of 'confirm' I suppose however: I'm taking it to mean 'shown to be correct', and it's that meaning I object to. In particular it is clearly not the case that this shows 'Einstein was right': it shows that GR agrees with experiment (extremely well!) so far, and this and LIGO both show (or are showing) that GR agrees with experiment in regions where the gravitational field is strong.






          share|cite|improve this answer









          $endgroup$



          I think it's fair to say that the EHT image definitely is consistent with GR, and so GR continues to agree with experimental data so far. The leading paper in the 10th April 2019 issue of Astrophysical Journal letters says (first sentence of the 'Discussion' section):




          A number of elements reinforce the robustness of our image and the conclusion that it is consistent with the shadow of a black hole as predicted by GR.




          I'm unhappy about the notion that this 'confirms' GR: it would be more correct to say that GR has not been shown to be wrong by this observation: nothing can definitively confirm a theory, which can only be shown to agree with experimental data so far. This might depend on your definition of 'confirm' I suppose however: I'm taking it to mean 'shown to be correct', and it's that meaning I object to. In particular it is clearly not the case that this shows 'Einstein was right': it shows that GR agrees with experiment (extremely well!) so far, and this and LIGO both show (or are showing) that GR agrees with experiment in regions where the gravitational field is strong.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 2 hours ago









          tfbtfb

          15.6k43251




          15.6k43251





















              5












              $begingroup$

              If you google "m87 and general relativity" you get a list and videos on confirmation.



              This is an exaggerated response to an interesting "photograph", because it looks just like what has been calculated using the theory of general relativity for black holes.



              General relativity has been confirmed by many cosmological observations, including the calculations for the GPS signal and black holes were proposed within the framework of General relativity by Karl Schwarzschild . It is very interesting that the image developed exactly in the topology predicted by the GR equations, but the validation of GR did not really depend on this. (If a funny topology not predicted had been seen it would actually be more interesting because it would have to be modeled by something more complicated than a Kerr black hole., and maybe a modification to GR might have been proposed) .



              So the image is consistent with the expectation of a Kerr black hole, and in this sense it validates General Relativity.






              share|cite|improve this answer









              $endgroup$












              • $begingroup$
                Anna thank you . But if say so , you mean GR is what final theory of gravity or is it simply the best of we have explaining everything that come ahead. But I have very acute problem knowing why didn't he tell us about why exactly space curves
                $endgroup$
                – Liquid
                2 hours ago






              • 4




                $begingroup$
                GR is the theory that fits our observations up to now. There are theorists trying to propose modification to GR. Well, in physics we cannot answer "Why" questions, but "how" from certain postulates using some equations we can fit observations. The "why these postulates and equations" belongs to metaphysics, not physics. Einstein was a physicist.
                $endgroup$
                – anna v
                2 hours ago










              • $begingroup$
                @annav: I think the kind of "why" Liquid was talking about is less a matter of metaphysics and more in the sense of "why do these two pieces of iron seem to attract one another?"
                $endgroup$
                – Nicol Bolas
                52 mins ago















              5












              $begingroup$

              If you google "m87 and general relativity" you get a list and videos on confirmation.



              This is an exaggerated response to an interesting "photograph", because it looks just like what has been calculated using the theory of general relativity for black holes.



              General relativity has been confirmed by many cosmological observations, including the calculations for the GPS signal and black holes were proposed within the framework of General relativity by Karl Schwarzschild . It is very interesting that the image developed exactly in the topology predicted by the GR equations, but the validation of GR did not really depend on this. (If a funny topology not predicted had been seen it would actually be more interesting because it would have to be modeled by something more complicated than a Kerr black hole., and maybe a modification to GR might have been proposed) .



              So the image is consistent with the expectation of a Kerr black hole, and in this sense it validates General Relativity.






              share|cite|improve this answer









              $endgroup$












              • $begingroup$
                Anna thank you . But if say so , you mean GR is what final theory of gravity or is it simply the best of we have explaining everything that come ahead. But I have very acute problem knowing why didn't he tell us about why exactly space curves
                $endgroup$
                – Liquid
                2 hours ago






              • 4




                $begingroup$
                GR is the theory that fits our observations up to now. There are theorists trying to propose modification to GR. Well, in physics we cannot answer "Why" questions, but "how" from certain postulates using some equations we can fit observations. The "why these postulates and equations" belongs to metaphysics, not physics. Einstein was a physicist.
                $endgroup$
                – anna v
                2 hours ago










              • $begingroup$
                @annav: I think the kind of "why" Liquid was talking about is less a matter of metaphysics and more in the sense of "why do these two pieces of iron seem to attract one another?"
                $endgroup$
                – Nicol Bolas
                52 mins ago













              5












              5








              5





              $begingroup$

              If you google "m87 and general relativity" you get a list and videos on confirmation.



              This is an exaggerated response to an interesting "photograph", because it looks just like what has been calculated using the theory of general relativity for black holes.



              General relativity has been confirmed by many cosmological observations, including the calculations for the GPS signal and black holes were proposed within the framework of General relativity by Karl Schwarzschild . It is very interesting that the image developed exactly in the topology predicted by the GR equations, but the validation of GR did not really depend on this. (If a funny topology not predicted had been seen it would actually be more interesting because it would have to be modeled by something more complicated than a Kerr black hole., and maybe a modification to GR might have been proposed) .



              So the image is consistent with the expectation of a Kerr black hole, and in this sense it validates General Relativity.






              share|cite|improve this answer









              $endgroup$



              If you google "m87 and general relativity" you get a list and videos on confirmation.



              This is an exaggerated response to an interesting "photograph", because it looks just like what has been calculated using the theory of general relativity for black holes.



              General relativity has been confirmed by many cosmological observations, including the calculations for the GPS signal and black holes were proposed within the framework of General relativity by Karl Schwarzschild . It is very interesting that the image developed exactly in the topology predicted by the GR equations, but the validation of GR did not really depend on this. (If a funny topology not predicted had been seen it would actually be more interesting because it would have to be modeled by something more complicated than a Kerr black hole., and maybe a modification to GR might have been proposed) .



              So the image is consistent with the expectation of a Kerr black hole, and in this sense it validates General Relativity.







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered 2 hours ago









              anna vanna v

              162k8153455




              162k8153455











              • $begingroup$
                Anna thank you . But if say so , you mean GR is what final theory of gravity or is it simply the best of we have explaining everything that come ahead. But I have very acute problem knowing why didn't he tell us about why exactly space curves
                $endgroup$
                – Liquid
                2 hours ago






              • 4




                $begingroup$
                GR is the theory that fits our observations up to now. There are theorists trying to propose modification to GR. Well, in physics we cannot answer "Why" questions, but "how" from certain postulates using some equations we can fit observations. The "why these postulates and equations" belongs to metaphysics, not physics. Einstein was a physicist.
                $endgroup$
                – anna v
                2 hours ago










              • $begingroup$
                @annav: I think the kind of "why" Liquid was talking about is less a matter of metaphysics and more in the sense of "why do these two pieces of iron seem to attract one another?"
                $endgroup$
                – Nicol Bolas
                52 mins ago
















              • $begingroup$
                Anna thank you . But if say so , you mean GR is what final theory of gravity or is it simply the best of we have explaining everything that come ahead. But I have very acute problem knowing why didn't he tell us about why exactly space curves
                $endgroup$
                – Liquid
                2 hours ago






              • 4




                $begingroup$
                GR is the theory that fits our observations up to now. There are theorists trying to propose modification to GR. Well, in physics we cannot answer "Why" questions, but "how" from certain postulates using some equations we can fit observations. The "why these postulates and equations" belongs to metaphysics, not physics. Einstein was a physicist.
                $endgroup$
                – anna v
                2 hours ago










              • $begingroup$
                @annav: I think the kind of "why" Liquid was talking about is less a matter of metaphysics and more in the sense of "why do these two pieces of iron seem to attract one another?"
                $endgroup$
                – Nicol Bolas
                52 mins ago















              $begingroup$
              Anna thank you . But if say so , you mean GR is what final theory of gravity or is it simply the best of we have explaining everything that come ahead. But I have very acute problem knowing why didn't he tell us about why exactly space curves
              $endgroup$
              – Liquid
              2 hours ago




              $begingroup$
              Anna thank you . But if say so , you mean GR is what final theory of gravity or is it simply the best of we have explaining everything that come ahead. But I have very acute problem knowing why didn't he tell us about why exactly space curves
              $endgroup$
              – Liquid
              2 hours ago




              4




              4




              $begingroup$
              GR is the theory that fits our observations up to now. There are theorists trying to propose modification to GR. Well, in physics we cannot answer "Why" questions, but "how" from certain postulates using some equations we can fit observations. The "why these postulates and equations" belongs to metaphysics, not physics. Einstein was a physicist.
              $endgroup$
              – anna v
              2 hours ago




              $begingroup$
              GR is the theory that fits our observations up to now. There are theorists trying to propose modification to GR. Well, in physics we cannot answer "Why" questions, but "how" from certain postulates using some equations we can fit observations. The "why these postulates and equations" belongs to metaphysics, not physics. Einstein was a physicist.
              $endgroup$
              – anna v
              2 hours ago












              $begingroup$
              @annav: I think the kind of "why" Liquid was talking about is less a matter of metaphysics and more in the sense of "why do these two pieces of iron seem to attract one another?"
              $endgroup$
              – Nicol Bolas
              52 mins ago




              $begingroup$
              @annav: I think the kind of "why" Liquid was talking about is less a matter of metaphysics and more in the sense of "why do these two pieces of iron seem to attract one another?"
              $endgroup$
              – Nicol Bolas
              52 mins ago











              0












              $begingroup$

              Answer: Yes, the images from the Event Horizon Telescope (EHT) are consistent with what general relativity predicts.



              To be clear about what this statement means, we need to remember how science works. Theories are inspired by observations, but theories are not deduced from observations. It's the other way around: theories make predictions. If the predictions consistently match what we observe, then we say that the theory works. Of course, contriving a theory that makes one prediction that matches one observation is trivial. Finding a theory that makes many predictions that match many observations is more challenging. General relativity is such a theory, and its agreement with this new observation — the images from the Event Horizon Telescope — is a nice addition to the large portfolio of general relativity's confirmed predictions.



              Even though the black hole is enormous, it is so far away that the diameter of the imaged ring spans less than $20$ billionths of a degree ($<20times 10^-9$ degree) in the sky, so pristine resolution cannot be expected; the fact that they were able to resolve it at all is remarkable. Still, the image shows some general features that are consistent with what is expected for a rapidly spinning black hole in general relativity — not just any rapidly spinning black hole, but one whose size, mass, spin, and orientation are all consistent with other observations associated with that same black hole in the core of the galaxy M87.



              A few of these observations are reviewed below, followed by comments on how the EHT images compare to predictions from general relativity.




              Other observations: The jet



              One of the most prominent associated observations is the jet emanating from the galaxy's core, shown here in images from the Hubble Space Telescope [$2$]:



              enter image description here



              To give a feeling for the scale of this picture, this is what hubblesite.org [$3$] says about the image:




              At a distance of 50 million light-years, M87 is too distant for Hubble to discern individual stars. The dozens of star-like points swarming about M87 are, instead, themselves clusters of hundreds of thousands of stars each.




              Here's another view of the jet, with scale-bars:



              enter image description here



              This image (from figure 2 in [$4$]) was made in 1999 using VLBI observations at a wavelength of 7 millimeters. The white dot marked $6r_S$ represents a circle with a diameter of $6$ times the alleged Schwarzschild radius. The scale bar marked "$1$ kpc" represents one kiloparsec, which is roughly 3000 light-years.



              According to general relativity, a rapidly spinning black hole with an accretion disk can generate intense magnetic fields (but see [$5$]) that funnel material from the accreting plasma into a jet emanating along the black hole's axis of rotation. The fact that the observed jet is so straight over a distance of thousands of light-years implies that it must be produced by an engine that maintains a very consistent orientation for a time span of at least thousands of years, as a supermassive black hole is expected to do.




              Other observations: The accretion disk



              According to [$6$]:




              HST [Hubble Space Telescope] imaged a disk of ionized gas, with a radius of $sim$ 50 pc [50 parsecs, roughly 150 light-years] centered on the galactic core... The high resolution of HST allowed the spectrum [which is sensitive to the Doppler effect] of this ionized gas to be measured as a function of position across the gas disk, thereby allowing the kinematics of the disk to be determined... It was found that the velocity profile of the central 20 pc of the gas disk possessed a Keplerian profile (i.e., $v propto r^-1/2$) as expected if the gas was orbiting in the gravitational potential of a point-like mass... The only known and long-lived object to possess such a large mass in a small region of space, and be as under-luminous as observed, is a SMBH [Super-Massive Black Hole].




              In other words, these observations showed evidence for gas disk with the velocity profile that would be expected if it were orbiting a supermassive black hole. Note that the measured gas velocities on opposite sides of the central body differ from each other by roughly 1000 kilometers per second.




              Other observations: The absense of strong surface emission



              According to a report [$7$] published in 2015:




              Observations at millimeter wavelengths with the Event Horizon Telescope have localized the emission from the base of this jet [shown above] to angular scales comparable to the putative black hole horizon. The jet might be powered directly by an accretion disk or by electromagnetic extraction of the rotational energy of the black hole. However, even the latter mechanism requires a confining thick accretion disk to maintain the required magnetic flux near the black hole. Therefore, regardless of the jet mechanism, the observed jet power in M87 implies a certain minimum mass accretion rate. If the central compact object in M87 were not a black hole but had a surface, this accretion would result in considerable thermal near-infrared and optical emission from the surface. Current flux limits on the nucleus of M87 strongly constrain any such surface emission. This rules out the presence of a surface and thereby provides indirect evidence for an event horizon.




              Regarding why the event horizon of a black hole is expected to be so dim even though the intense fields generate a powerful jet, see these Physics SE posts:



              • How can Quasars emit anything if they're black holes?


              • How can cosmic jets exist?



              Comparing the EHT images to predictions



              Page 5 in the first event horizon telescope paper (L$1$ in [$1$]) says:




              The appearance of M87* has been modeled successfully using GRMHD [general-relativistic magnetohydrodynamics] simulations, which describe a turbulent, hot, magnetized disk orbiting a Kerr black hole. They naturally produce a powerful jet and can explain the broadband spectral energy distribution observed in LLAGNs. At a wavelength of 1.3mm, and as observed here, the simulations also predict a shadow and an asymmetric emission ring.




              Page 6 says:




              ...adopting an inclination of $17^circ$ between the approaching jet and the line of sight..., the west orientation of the jet, and a corotating disk model, matter in the bottom part of the image is moving toward the observer (clockwise rotation as seen from Earth). This is consistent with the rotation of the ionized gas on scales of 20 pc [20 parsecs, roughly 60 light-years], i.e., 7000 $r_g$ ["where $r_gequiv GM/c^2$ is the characteristic lengthscale of a black hole"]... and with the inferred sense of rotation from VLBI observations at 7 mm...




              These excerpts say that when using black-hole parameters consistent with other observations, general relativity can predict the features of the images observed by the EHT. These features, including the reduced brightness in the center and the asymmetry of the brightness of the ring, with an orientation consistent with the observed jet, are hallmarks of a rapidly spinning black hole. In this sense, the images from the Event Horizon Telescope (EHT) do confirm general relativity.



              The comparisons between general relativity's predictions and the observed images are described in detail in the fifth event horizon telescope paper (L$5$ in [$1$]), and some of them have already been reviewed on Physics SE:



              • Why isn't the circumferential light around the M87 black hole's event horizon symmetric?


              References:



              [$1$] https://iopscience.iop.org/issue/2041-8205/875/1, Table of contents of The Astrophysical Journal Letters, volume 875, number 1 (2019 April 10), with six downloadable articles (L$1$ thorugh L$6$)



              [$2$] https://www.nasa.gov/feature/goddard/2017/messier-87



              [$3$] "Black Hole-Powered Jet of Electrons and Sub-Atomic Particles Streams From Center of Galaxy M87," http://hubblesite.org/image/968/news_release/2000-20



              [$4$] "Formation of the radio jet in M87 at 100 Schwarzschild radii from the central black hole," Nature 401, 891-892 (1999), https://www.nature.com/articles/44780



              [$5$] "A precise measurement of the magnetic field in the corona of the black hole binary V404 Cygni," Science 358: 1299-1302 (2017), https://science.sciencemag.org/content/358/6368/1299



              [$6$] "Fluorescent iron lines as a probe of astrophysical black hole systems," https://arxiv.org/abs/astro-ph/0212065



              [$7$] Broderick et al, "The Event Horizon of M87," https://arxiv.org/abs/1503.03873






              share|cite|improve this answer









              $endgroup$

















                0












                $begingroup$

                Answer: Yes, the images from the Event Horizon Telescope (EHT) are consistent with what general relativity predicts.



                To be clear about what this statement means, we need to remember how science works. Theories are inspired by observations, but theories are not deduced from observations. It's the other way around: theories make predictions. If the predictions consistently match what we observe, then we say that the theory works. Of course, contriving a theory that makes one prediction that matches one observation is trivial. Finding a theory that makes many predictions that match many observations is more challenging. General relativity is such a theory, and its agreement with this new observation — the images from the Event Horizon Telescope — is a nice addition to the large portfolio of general relativity's confirmed predictions.



                Even though the black hole is enormous, it is so far away that the diameter of the imaged ring spans less than $20$ billionths of a degree ($<20times 10^-9$ degree) in the sky, so pristine resolution cannot be expected; the fact that they were able to resolve it at all is remarkable. Still, the image shows some general features that are consistent with what is expected for a rapidly spinning black hole in general relativity — not just any rapidly spinning black hole, but one whose size, mass, spin, and orientation are all consistent with other observations associated with that same black hole in the core of the galaxy M87.



                A few of these observations are reviewed below, followed by comments on how the EHT images compare to predictions from general relativity.




                Other observations: The jet



                One of the most prominent associated observations is the jet emanating from the galaxy's core, shown here in images from the Hubble Space Telescope [$2$]:



                enter image description here



                To give a feeling for the scale of this picture, this is what hubblesite.org [$3$] says about the image:




                At a distance of 50 million light-years, M87 is too distant for Hubble to discern individual stars. The dozens of star-like points swarming about M87 are, instead, themselves clusters of hundreds of thousands of stars each.




                Here's another view of the jet, with scale-bars:



                enter image description here



                This image (from figure 2 in [$4$]) was made in 1999 using VLBI observations at a wavelength of 7 millimeters. The white dot marked $6r_S$ represents a circle with a diameter of $6$ times the alleged Schwarzschild radius. The scale bar marked "$1$ kpc" represents one kiloparsec, which is roughly 3000 light-years.



                According to general relativity, a rapidly spinning black hole with an accretion disk can generate intense magnetic fields (but see [$5$]) that funnel material from the accreting plasma into a jet emanating along the black hole's axis of rotation. The fact that the observed jet is so straight over a distance of thousands of light-years implies that it must be produced by an engine that maintains a very consistent orientation for a time span of at least thousands of years, as a supermassive black hole is expected to do.




                Other observations: The accretion disk



                According to [$6$]:




                HST [Hubble Space Telescope] imaged a disk of ionized gas, with a radius of $sim$ 50 pc [50 parsecs, roughly 150 light-years] centered on the galactic core... The high resolution of HST allowed the spectrum [which is sensitive to the Doppler effect] of this ionized gas to be measured as a function of position across the gas disk, thereby allowing the kinematics of the disk to be determined... It was found that the velocity profile of the central 20 pc of the gas disk possessed a Keplerian profile (i.e., $v propto r^-1/2$) as expected if the gas was orbiting in the gravitational potential of a point-like mass... The only known and long-lived object to possess such a large mass in a small region of space, and be as under-luminous as observed, is a SMBH [Super-Massive Black Hole].




                In other words, these observations showed evidence for gas disk with the velocity profile that would be expected if it were orbiting a supermassive black hole. Note that the measured gas velocities on opposite sides of the central body differ from each other by roughly 1000 kilometers per second.




                Other observations: The absense of strong surface emission



                According to a report [$7$] published in 2015:




                Observations at millimeter wavelengths with the Event Horizon Telescope have localized the emission from the base of this jet [shown above] to angular scales comparable to the putative black hole horizon. The jet might be powered directly by an accretion disk or by electromagnetic extraction of the rotational energy of the black hole. However, even the latter mechanism requires a confining thick accretion disk to maintain the required magnetic flux near the black hole. Therefore, regardless of the jet mechanism, the observed jet power in M87 implies a certain minimum mass accretion rate. If the central compact object in M87 were not a black hole but had a surface, this accretion would result in considerable thermal near-infrared and optical emission from the surface. Current flux limits on the nucleus of M87 strongly constrain any such surface emission. This rules out the presence of a surface and thereby provides indirect evidence for an event horizon.




                Regarding why the event horizon of a black hole is expected to be so dim even though the intense fields generate a powerful jet, see these Physics SE posts:



                • How can Quasars emit anything if they're black holes?


                • How can cosmic jets exist?



                Comparing the EHT images to predictions



                Page 5 in the first event horizon telescope paper (L$1$ in [$1$]) says:




                The appearance of M87* has been modeled successfully using GRMHD [general-relativistic magnetohydrodynamics] simulations, which describe a turbulent, hot, magnetized disk orbiting a Kerr black hole. They naturally produce a powerful jet and can explain the broadband spectral energy distribution observed in LLAGNs. At a wavelength of 1.3mm, and as observed here, the simulations also predict a shadow and an asymmetric emission ring.




                Page 6 says:




                ...adopting an inclination of $17^circ$ between the approaching jet and the line of sight..., the west orientation of the jet, and a corotating disk model, matter in the bottom part of the image is moving toward the observer (clockwise rotation as seen from Earth). This is consistent with the rotation of the ionized gas on scales of 20 pc [20 parsecs, roughly 60 light-years], i.e., 7000 $r_g$ ["where $r_gequiv GM/c^2$ is the characteristic lengthscale of a black hole"]... and with the inferred sense of rotation from VLBI observations at 7 mm...




                These excerpts say that when using black-hole parameters consistent with other observations, general relativity can predict the features of the images observed by the EHT. These features, including the reduced brightness in the center and the asymmetry of the brightness of the ring, with an orientation consistent with the observed jet, are hallmarks of a rapidly spinning black hole. In this sense, the images from the Event Horizon Telescope (EHT) do confirm general relativity.



                The comparisons between general relativity's predictions and the observed images are described in detail in the fifth event horizon telescope paper (L$5$ in [$1$]), and some of them have already been reviewed on Physics SE:



                • Why isn't the circumferential light around the M87 black hole's event horizon symmetric?


                References:



                [$1$] https://iopscience.iop.org/issue/2041-8205/875/1, Table of contents of The Astrophysical Journal Letters, volume 875, number 1 (2019 April 10), with six downloadable articles (L$1$ thorugh L$6$)



                [$2$] https://www.nasa.gov/feature/goddard/2017/messier-87



                [$3$] "Black Hole-Powered Jet of Electrons and Sub-Atomic Particles Streams From Center of Galaxy M87," http://hubblesite.org/image/968/news_release/2000-20



                [$4$] "Formation of the radio jet in M87 at 100 Schwarzschild radii from the central black hole," Nature 401, 891-892 (1999), https://www.nature.com/articles/44780



                [$5$] "A precise measurement of the magnetic field in the corona of the black hole binary V404 Cygni," Science 358: 1299-1302 (2017), https://science.sciencemag.org/content/358/6368/1299



                [$6$] "Fluorescent iron lines as a probe of astrophysical black hole systems," https://arxiv.org/abs/astro-ph/0212065



                [$7$] Broderick et al, "The Event Horizon of M87," https://arxiv.org/abs/1503.03873






                share|cite|improve this answer









                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  Answer: Yes, the images from the Event Horizon Telescope (EHT) are consistent with what general relativity predicts.



                  To be clear about what this statement means, we need to remember how science works. Theories are inspired by observations, but theories are not deduced from observations. It's the other way around: theories make predictions. If the predictions consistently match what we observe, then we say that the theory works. Of course, contriving a theory that makes one prediction that matches one observation is trivial. Finding a theory that makes many predictions that match many observations is more challenging. General relativity is such a theory, and its agreement with this new observation — the images from the Event Horizon Telescope — is a nice addition to the large portfolio of general relativity's confirmed predictions.



                  Even though the black hole is enormous, it is so far away that the diameter of the imaged ring spans less than $20$ billionths of a degree ($<20times 10^-9$ degree) in the sky, so pristine resolution cannot be expected; the fact that they were able to resolve it at all is remarkable. Still, the image shows some general features that are consistent with what is expected for a rapidly spinning black hole in general relativity — not just any rapidly spinning black hole, but one whose size, mass, spin, and orientation are all consistent with other observations associated with that same black hole in the core of the galaxy M87.



                  A few of these observations are reviewed below, followed by comments on how the EHT images compare to predictions from general relativity.




                  Other observations: The jet



                  One of the most prominent associated observations is the jet emanating from the galaxy's core, shown here in images from the Hubble Space Telescope [$2$]:



                  enter image description here



                  To give a feeling for the scale of this picture, this is what hubblesite.org [$3$] says about the image:




                  At a distance of 50 million light-years, M87 is too distant for Hubble to discern individual stars. The dozens of star-like points swarming about M87 are, instead, themselves clusters of hundreds of thousands of stars each.




                  Here's another view of the jet, with scale-bars:



                  enter image description here



                  This image (from figure 2 in [$4$]) was made in 1999 using VLBI observations at a wavelength of 7 millimeters. The white dot marked $6r_S$ represents a circle with a diameter of $6$ times the alleged Schwarzschild radius. The scale bar marked "$1$ kpc" represents one kiloparsec, which is roughly 3000 light-years.



                  According to general relativity, a rapidly spinning black hole with an accretion disk can generate intense magnetic fields (but see [$5$]) that funnel material from the accreting plasma into a jet emanating along the black hole's axis of rotation. The fact that the observed jet is so straight over a distance of thousands of light-years implies that it must be produced by an engine that maintains a very consistent orientation for a time span of at least thousands of years, as a supermassive black hole is expected to do.




                  Other observations: The accretion disk



                  According to [$6$]:




                  HST [Hubble Space Telescope] imaged a disk of ionized gas, with a radius of $sim$ 50 pc [50 parsecs, roughly 150 light-years] centered on the galactic core... The high resolution of HST allowed the spectrum [which is sensitive to the Doppler effect] of this ionized gas to be measured as a function of position across the gas disk, thereby allowing the kinematics of the disk to be determined... It was found that the velocity profile of the central 20 pc of the gas disk possessed a Keplerian profile (i.e., $v propto r^-1/2$) as expected if the gas was orbiting in the gravitational potential of a point-like mass... The only known and long-lived object to possess such a large mass in a small region of space, and be as under-luminous as observed, is a SMBH [Super-Massive Black Hole].




                  In other words, these observations showed evidence for gas disk with the velocity profile that would be expected if it were orbiting a supermassive black hole. Note that the measured gas velocities on opposite sides of the central body differ from each other by roughly 1000 kilometers per second.




                  Other observations: The absense of strong surface emission



                  According to a report [$7$] published in 2015:




                  Observations at millimeter wavelengths with the Event Horizon Telescope have localized the emission from the base of this jet [shown above] to angular scales comparable to the putative black hole horizon. The jet might be powered directly by an accretion disk or by electromagnetic extraction of the rotational energy of the black hole. However, even the latter mechanism requires a confining thick accretion disk to maintain the required magnetic flux near the black hole. Therefore, regardless of the jet mechanism, the observed jet power in M87 implies a certain minimum mass accretion rate. If the central compact object in M87 were not a black hole but had a surface, this accretion would result in considerable thermal near-infrared and optical emission from the surface. Current flux limits on the nucleus of M87 strongly constrain any such surface emission. This rules out the presence of a surface and thereby provides indirect evidence for an event horizon.




                  Regarding why the event horizon of a black hole is expected to be so dim even though the intense fields generate a powerful jet, see these Physics SE posts:



                  • How can Quasars emit anything if they're black holes?


                  • How can cosmic jets exist?



                  Comparing the EHT images to predictions



                  Page 5 in the first event horizon telescope paper (L$1$ in [$1$]) says:




                  The appearance of M87* has been modeled successfully using GRMHD [general-relativistic magnetohydrodynamics] simulations, which describe a turbulent, hot, magnetized disk orbiting a Kerr black hole. They naturally produce a powerful jet and can explain the broadband spectral energy distribution observed in LLAGNs. At a wavelength of 1.3mm, and as observed here, the simulations also predict a shadow and an asymmetric emission ring.




                  Page 6 says:




                  ...adopting an inclination of $17^circ$ between the approaching jet and the line of sight..., the west orientation of the jet, and a corotating disk model, matter in the bottom part of the image is moving toward the observer (clockwise rotation as seen from Earth). This is consistent with the rotation of the ionized gas on scales of 20 pc [20 parsecs, roughly 60 light-years], i.e., 7000 $r_g$ ["where $r_gequiv GM/c^2$ is the characteristic lengthscale of a black hole"]... and with the inferred sense of rotation from VLBI observations at 7 mm...




                  These excerpts say that when using black-hole parameters consistent with other observations, general relativity can predict the features of the images observed by the EHT. These features, including the reduced brightness in the center and the asymmetry of the brightness of the ring, with an orientation consistent with the observed jet, are hallmarks of a rapidly spinning black hole. In this sense, the images from the Event Horizon Telescope (EHT) do confirm general relativity.



                  The comparisons between general relativity's predictions and the observed images are described in detail in the fifth event horizon telescope paper (L$5$ in [$1$]), and some of them have already been reviewed on Physics SE:



                  • Why isn't the circumferential light around the M87 black hole's event horizon symmetric?


                  References:



                  [$1$] https://iopscience.iop.org/issue/2041-8205/875/1, Table of contents of The Astrophysical Journal Letters, volume 875, number 1 (2019 April 10), with six downloadable articles (L$1$ thorugh L$6$)



                  [$2$] https://www.nasa.gov/feature/goddard/2017/messier-87



                  [$3$] "Black Hole-Powered Jet of Electrons and Sub-Atomic Particles Streams From Center of Galaxy M87," http://hubblesite.org/image/968/news_release/2000-20



                  [$4$] "Formation of the radio jet in M87 at 100 Schwarzschild radii from the central black hole," Nature 401, 891-892 (1999), https://www.nature.com/articles/44780



                  [$5$] "A precise measurement of the magnetic field in the corona of the black hole binary V404 Cygni," Science 358: 1299-1302 (2017), https://science.sciencemag.org/content/358/6368/1299



                  [$6$] "Fluorescent iron lines as a probe of astrophysical black hole systems," https://arxiv.org/abs/astro-ph/0212065



                  [$7$] Broderick et al, "The Event Horizon of M87," https://arxiv.org/abs/1503.03873






                  share|cite|improve this answer









                  $endgroup$



                  Answer: Yes, the images from the Event Horizon Telescope (EHT) are consistent with what general relativity predicts.



                  To be clear about what this statement means, we need to remember how science works. Theories are inspired by observations, but theories are not deduced from observations. It's the other way around: theories make predictions. If the predictions consistently match what we observe, then we say that the theory works. Of course, contriving a theory that makes one prediction that matches one observation is trivial. Finding a theory that makes many predictions that match many observations is more challenging. General relativity is such a theory, and its agreement with this new observation — the images from the Event Horizon Telescope — is a nice addition to the large portfolio of general relativity's confirmed predictions.



                  Even though the black hole is enormous, it is so far away that the diameter of the imaged ring spans less than $20$ billionths of a degree ($<20times 10^-9$ degree) in the sky, so pristine resolution cannot be expected; the fact that they were able to resolve it at all is remarkable. Still, the image shows some general features that are consistent with what is expected for a rapidly spinning black hole in general relativity — not just any rapidly spinning black hole, but one whose size, mass, spin, and orientation are all consistent with other observations associated with that same black hole in the core of the galaxy M87.



                  A few of these observations are reviewed below, followed by comments on how the EHT images compare to predictions from general relativity.




                  Other observations: The jet



                  One of the most prominent associated observations is the jet emanating from the galaxy's core, shown here in images from the Hubble Space Telescope [$2$]:



                  enter image description here



                  To give a feeling for the scale of this picture, this is what hubblesite.org [$3$] says about the image:




                  At a distance of 50 million light-years, M87 is too distant for Hubble to discern individual stars. The dozens of star-like points swarming about M87 are, instead, themselves clusters of hundreds of thousands of stars each.




                  Here's another view of the jet, with scale-bars:



                  enter image description here



                  This image (from figure 2 in [$4$]) was made in 1999 using VLBI observations at a wavelength of 7 millimeters. The white dot marked $6r_S$ represents a circle with a diameter of $6$ times the alleged Schwarzschild radius. The scale bar marked "$1$ kpc" represents one kiloparsec, which is roughly 3000 light-years.



                  According to general relativity, a rapidly spinning black hole with an accretion disk can generate intense magnetic fields (but see [$5$]) that funnel material from the accreting plasma into a jet emanating along the black hole's axis of rotation. The fact that the observed jet is so straight over a distance of thousands of light-years implies that it must be produced by an engine that maintains a very consistent orientation for a time span of at least thousands of years, as a supermassive black hole is expected to do.




                  Other observations: The accretion disk



                  According to [$6$]:




                  HST [Hubble Space Telescope] imaged a disk of ionized gas, with a radius of $sim$ 50 pc [50 parsecs, roughly 150 light-years] centered on the galactic core... The high resolution of HST allowed the spectrum [which is sensitive to the Doppler effect] of this ionized gas to be measured as a function of position across the gas disk, thereby allowing the kinematics of the disk to be determined... It was found that the velocity profile of the central 20 pc of the gas disk possessed a Keplerian profile (i.e., $v propto r^-1/2$) as expected if the gas was orbiting in the gravitational potential of a point-like mass... The only known and long-lived object to possess such a large mass in a small region of space, and be as under-luminous as observed, is a SMBH [Super-Massive Black Hole].




                  In other words, these observations showed evidence for gas disk with the velocity profile that would be expected if it were orbiting a supermassive black hole. Note that the measured gas velocities on opposite sides of the central body differ from each other by roughly 1000 kilometers per second.




                  Other observations: The absense of strong surface emission



                  According to a report [$7$] published in 2015:




                  Observations at millimeter wavelengths with the Event Horizon Telescope have localized the emission from the base of this jet [shown above] to angular scales comparable to the putative black hole horizon. The jet might be powered directly by an accretion disk or by electromagnetic extraction of the rotational energy of the black hole. However, even the latter mechanism requires a confining thick accretion disk to maintain the required magnetic flux near the black hole. Therefore, regardless of the jet mechanism, the observed jet power in M87 implies a certain minimum mass accretion rate. If the central compact object in M87 were not a black hole but had a surface, this accretion would result in considerable thermal near-infrared and optical emission from the surface. Current flux limits on the nucleus of M87 strongly constrain any such surface emission. This rules out the presence of a surface and thereby provides indirect evidence for an event horizon.




                  Regarding why the event horizon of a black hole is expected to be so dim even though the intense fields generate a powerful jet, see these Physics SE posts:



                  • How can Quasars emit anything if they're black holes?


                  • How can cosmic jets exist?



                  Comparing the EHT images to predictions



                  Page 5 in the first event horizon telescope paper (L$1$ in [$1$]) says:




                  The appearance of M87* has been modeled successfully using GRMHD [general-relativistic magnetohydrodynamics] simulations, which describe a turbulent, hot, magnetized disk orbiting a Kerr black hole. They naturally produce a powerful jet and can explain the broadband spectral energy distribution observed in LLAGNs. At a wavelength of 1.3mm, and as observed here, the simulations also predict a shadow and an asymmetric emission ring.




                  Page 6 says:




                  ...adopting an inclination of $17^circ$ between the approaching jet and the line of sight..., the west orientation of the jet, and a corotating disk model, matter in the bottom part of the image is moving toward the observer (clockwise rotation as seen from Earth). This is consistent with the rotation of the ionized gas on scales of 20 pc [20 parsecs, roughly 60 light-years], i.e., 7000 $r_g$ ["where $r_gequiv GM/c^2$ is the characteristic lengthscale of a black hole"]... and with the inferred sense of rotation from VLBI observations at 7 mm...




                  These excerpts say that when using black-hole parameters consistent with other observations, general relativity can predict the features of the images observed by the EHT. These features, including the reduced brightness in the center and the asymmetry of the brightness of the ring, with an orientation consistent with the observed jet, are hallmarks of a rapidly spinning black hole. In this sense, the images from the Event Horizon Telescope (EHT) do confirm general relativity.



                  The comparisons between general relativity's predictions and the observed images are described in detail in the fifth event horizon telescope paper (L$5$ in [$1$]), and some of them have already been reviewed on Physics SE:



                  • Why isn't the circumferential light around the M87 black hole's event horizon symmetric?


                  References:



                  [$1$] https://iopscience.iop.org/issue/2041-8205/875/1, Table of contents of The Astrophysical Journal Letters, volume 875, number 1 (2019 April 10), with six downloadable articles (L$1$ thorugh L$6$)



                  [$2$] https://www.nasa.gov/feature/goddard/2017/messier-87



                  [$3$] "Black Hole-Powered Jet of Electrons and Sub-Atomic Particles Streams From Center of Galaxy M87," http://hubblesite.org/image/968/news_release/2000-20



                  [$4$] "Formation of the radio jet in M87 at 100 Schwarzschild radii from the central black hole," Nature 401, 891-892 (1999), https://www.nature.com/articles/44780



                  [$5$] "A precise measurement of the magnetic field in the corona of the black hole binary V404 Cygni," Science 358: 1299-1302 (2017), https://science.sciencemag.org/content/358/6368/1299



                  [$6$] "Fluorescent iron lines as a probe of astrophysical black hole systems," https://arxiv.org/abs/astro-ph/0212065



                  [$7$] Broderick et al, "The Event Horizon of M87," https://arxiv.org/abs/1503.03873







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 23 mins ago









                  Chiral AnomalyChiral Anomaly

                  13.5k21845




                  13.5k21845



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Physics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f472323%2fdid-the-new-image-of-black-hole-confirm-the-general-theory-of-relativity%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Are there any AGPL-style licences that require source code modifications to be public? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Force derivative works to be publicAre there any GPL like licenses for Apple App Store?Do you violate the GPL if you provide source code that cannot be compiled?GPL - is it distribution to use libraries in an appliance loaned to customers?Distributing App for free which uses GPL'ed codeModifications of server software under GPL, with web/CLI interfaceDoes using an AGPLv3-licensed library prevent me from dual-licensing my own source code?Can I publish only select code under GPLv3 from a private project?Is there published precedent regarding the scope of covered work that uses AGPL software?If MIT licensed code links to GPL licensed code what should be the license of the resulting binary program?If I use a public API endpoint that has its source code licensed under AGPL in my app, do I need to disclose my source?

                      2013 GY136 Descoberta | Órbita | Referências Menu de navegação«List Of Centaurs and Scattered-Disk Objects»«List of Known Trans-Neptunian Objects»

                      Metrô de Los Teques Índice Linhas | Estações | Ver também | Referências Ligações externas | Menu de navegação«INSTITUCIÓN»«Mapa de rutas»originalMetrô de Los TequesC.A. Metro Los Teques |Alcaldía de Guaicaipuro – Sitio OficialGobernacion de Mirandaeeeeeee