Solving Integral Equation by Converting to Differential Equations The Next CEO of Stack OverflowAre there methods to solve coupled integral and integro-differential equations?Voltera equationSolve integral equation by converting to differential equationHow can I solve this integral equation by converting it to a differential equationConverting a integral equation to differential equationSolving integro-differential equation - numericallySolution of Differential equation as an integral equationConverting Differential Operator to Integral Equationreference for converting an integro-differential equation to a differential algebraic equationSolving second order ordinary differential equation with variable constants

WOW air has ceased operation, can I get my tickets refunded?

What does "Its cash flow is deeply negative" mean?

Different harmonic changes implied by a simple descending scale

Complex fractions

Should I tutor a student who I know has cheated on their homework?

If Nick Fury and Coulson already knew about aliens (Kree and Skrull) why did they wait until Thor's appearance to start making weapons?

MessageLevel in QGIS3

Why has the US not been more assertive in confronting Russia in recent years?

Anatomically Correct Strange Women In Ponds Distributing Swords

Several mode to write the symbol of a vector

How do scammers retract money, while you can’t?

How to make a variable always equal to the result of some calculations?

I believe this to be a fraud - hired, then asked to cash check and send cash as Bitcoin

Is there a way to save my career from absolute disaster?

Help understanding this unsettling image of Titan, Epimetheus, and Saturn's rings?

In excess I'm lethal

Are there any limitations on attacking while grappling?

What was the first Unix version to run on a microcomputer?

Can I equip Skullclamp on a creature I am sacrificing?

Why didn't Khan get resurrected in the Genesis Explosion?

How did people program for Consoles with multiple CPUs?

Written every which way

Unreliable Magic - Is it worth it?

Why do airplanes bank sharply to the right after air-to-air refueling?



Solving Integral Equation by Converting to Differential Equations



The Next CEO of Stack OverflowAre there methods to solve coupled integral and integro-differential equations?Voltera equationSolve integral equation by converting to differential equationHow can I solve this integral equation by converting it to a differential equationConverting a integral equation to differential equationSolving integro-differential equation - numericallySolution of Differential equation as an integral equationConverting Differential Operator to Integral Equationreference for converting an integro-differential equation to a differential algebraic equationSolving second order ordinary differential equation with variable constants










2












$begingroup$


Consider the problem



$$phi(x) = x - int_0^x(x-s)phi(s),ds$$



How can we solve this by converting to a differential equation?










share|cite|improve this question









$endgroup$
















    2












    $begingroup$


    Consider the problem



    $$phi(x) = x - int_0^x(x-s)phi(s),ds$$



    How can we solve this by converting to a differential equation?










    share|cite|improve this question









    $endgroup$














      2












      2








      2





      $begingroup$


      Consider the problem



      $$phi(x) = x - int_0^x(x-s)phi(s),ds$$



      How can we solve this by converting to a differential equation?










      share|cite|improve this question









      $endgroup$




      Consider the problem



      $$phi(x) = x - int_0^x(x-s)phi(s),ds$$



      How can we solve this by converting to a differential equation?







      ordinary-differential-equations integral-equations integro-differential-equations






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 5 hours ago









      LightningStrikeLightningStrike

      555




      555




















          2 Answers
          2






          active

          oldest

          votes


















          4












          $begingroup$

          We have that
          $$phi(x)=x-xint_0^x phi(s) mathrmd s + int_0^x s phi(s)mathrmds$$
          From this, we can see that $phi(0)=0$.
          We can differentiate both sides and use the product rule and the FTC1 to get:
          $$phi'(x)=1-int_0^x phi(s) mathrmds -x phi(x)+xphi(x)$$
          $$phi'(x)=1-int_0^x phi(s) mathrmd s$$
          From this, we can see that $phi'(0)=1$. We can differentiate it again:
          $$phi''(x)=-phi(x)$$
          Which is an alternative definition of the $sin$ function.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            In fact, the only valid solution for $phi(x)$ is $sin(x)$ because of the original equation.
            $endgroup$
            – Peter Foreman
            5 hours ago










          • $begingroup$
            @PeterForemann Yes. I calculated $phi(0)$ and $phi'(0)$ from the integral equation to avoid the lengthy substitution and integration.
            $endgroup$
            – Botond
            5 hours ago











          • $begingroup$
            Thank you for your answer! Do you mind if I ask how you got $phi ''(x) = -phi (x)$ by differentiating $phi ' (x)$? I don't understand the steps taken.
            $endgroup$
            – LightningStrike
            4 hours ago










          • $begingroup$
            @LightningStrike Do you see how did I get $phi'(x)=1-int_0^x phi(s) mathrmds$?
            $endgroup$
            – Botond
            4 hours ago


















          1












          $begingroup$

          Differentiating both sides using Leibniz rule :



          $$phi '(x)=1-int_0^xphi (s)ds$$



          Differentiate again:



          $$phi ''(x)=-phi (x)$$






          share|cite|improve this answer











          $endgroup$








          • 1




            $begingroup$
            Your answer is great, but Leibniz's rule is an overkill here, because it requires partial derivatives and the proof is based on measure theory.
            $endgroup$
            – Botond
            4 hours ago










          • $begingroup$
            may be you are right...but this is a common technique in an introductory course of integral equations.
            $endgroup$
            – logo
            4 hours ago











          • $begingroup$
            I didn't take any course in integral equations, but we used Leibniz's rule during a physics course (without a proof), and it's a really useful tool to have. And we don't really know which is the appropriate solution to the questioner.
            $endgroup$
            – Botond
            4 hours ago












          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167442%2fsolving-integral-equation-by-converting-to-differential-equations%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          4












          $begingroup$

          We have that
          $$phi(x)=x-xint_0^x phi(s) mathrmd s + int_0^x s phi(s)mathrmds$$
          From this, we can see that $phi(0)=0$.
          We can differentiate both sides and use the product rule and the FTC1 to get:
          $$phi'(x)=1-int_0^x phi(s) mathrmds -x phi(x)+xphi(x)$$
          $$phi'(x)=1-int_0^x phi(s) mathrmd s$$
          From this, we can see that $phi'(0)=1$. We can differentiate it again:
          $$phi''(x)=-phi(x)$$
          Which is an alternative definition of the $sin$ function.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            In fact, the only valid solution for $phi(x)$ is $sin(x)$ because of the original equation.
            $endgroup$
            – Peter Foreman
            5 hours ago










          • $begingroup$
            @PeterForemann Yes. I calculated $phi(0)$ and $phi'(0)$ from the integral equation to avoid the lengthy substitution and integration.
            $endgroup$
            – Botond
            5 hours ago











          • $begingroup$
            Thank you for your answer! Do you mind if I ask how you got $phi ''(x) = -phi (x)$ by differentiating $phi ' (x)$? I don't understand the steps taken.
            $endgroup$
            – LightningStrike
            4 hours ago










          • $begingroup$
            @LightningStrike Do you see how did I get $phi'(x)=1-int_0^x phi(s) mathrmds$?
            $endgroup$
            – Botond
            4 hours ago















          4












          $begingroup$

          We have that
          $$phi(x)=x-xint_0^x phi(s) mathrmd s + int_0^x s phi(s)mathrmds$$
          From this, we can see that $phi(0)=0$.
          We can differentiate both sides and use the product rule and the FTC1 to get:
          $$phi'(x)=1-int_0^x phi(s) mathrmds -x phi(x)+xphi(x)$$
          $$phi'(x)=1-int_0^x phi(s) mathrmd s$$
          From this, we can see that $phi'(0)=1$. We can differentiate it again:
          $$phi''(x)=-phi(x)$$
          Which is an alternative definition of the $sin$ function.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            In fact, the only valid solution for $phi(x)$ is $sin(x)$ because of the original equation.
            $endgroup$
            – Peter Foreman
            5 hours ago










          • $begingroup$
            @PeterForemann Yes. I calculated $phi(0)$ and $phi'(0)$ from the integral equation to avoid the lengthy substitution and integration.
            $endgroup$
            – Botond
            5 hours ago











          • $begingroup$
            Thank you for your answer! Do you mind if I ask how you got $phi ''(x) = -phi (x)$ by differentiating $phi ' (x)$? I don't understand the steps taken.
            $endgroup$
            – LightningStrike
            4 hours ago










          • $begingroup$
            @LightningStrike Do you see how did I get $phi'(x)=1-int_0^x phi(s) mathrmds$?
            $endgroup$
            – Botond
            4 hours ago













          4












          4








          4





          $begingroup$

          We have that
          $$phi(x)=x-xint_0^x phi(s) mathrmd s + int_0^x s phi(s)mathrmds$$
          From this, we can see that $phi(0)=0$.
          We can differentiate both sides and use the product rule and the FTC1 to get:
          $$phi'(x)=1-int_0^x phi(s) mathrmds -x phi(x)+xphi(x)$$
          $$phi'(x)=1-int_0^x phi(s) mathrmd s$$
          From this, we can see that $phi'(0)=1$. We can differentiate it again:
          $$phi''(x)=-phi(x)$$
          Which is an alternative definition of the $sin$ function.






          share|cite|improve this answer











          $endgroup$



          We have that
          $$phi(x)=x-xint_0^x phi(s) mathrmd s + int_0^x s phi(s)mathrmds$$
          From this, we can see that $phi(0)=0$.
          We can differentiate both sides and use the product rule and the FTC1 to get:
          $$phi'(x)=1-int_0^x phi(s) mathrmds -x phi(x)+xphi(x)$$
          $$phi'(x)=1-int_0^x phi(s) mathrmd s$$
          From this, we can see that $phi'(0)=1$. We can differentiate it again:
          $$phi''(x)=-phi(x)$$
          Which is an alternative definition of the $sin$ function.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 5 hours ago

























          answered 5 hours ago









          BotondBotond

          6,49331034




          6,49331034











          • $begingroup$
            In fact, the only valid solution for $phi(x)$ is $sin(x)$ because of the original equation.
            $endgroup$
            – Peter Foreman
            5 hours ago










          • $begingroup$
            @PeterForemann Yes. I calculated $phi(0)$ and $phi'(0)$ from the integral equation to avoid the lengthy substitution and integration.
            $endgroup$
            – Botond
            5 hours ago











          • $begingroup$
            Thank you for your answer! Do you mind if I ask how you got $phi ''(x) = -phi (x)$ by differentiating $phi ' (x)$? I don't understand the steps taken.
            $endgroup$
            – LightningStrike
            4 hours ago










          • $begingroup$
            @LightningStrike Do you see how did I get $phi'(x)=1-int_0^x phi(s) mathrmds$?
            $endgroup$
            – Botond
            4 hours ago
















          • $begingroup$
            In fact, the only valid solution for $phi(x)$ is $sin(x)$ because of the original equation.
            $endgroup$
            – Peter Foreman
            5 hours ago










          • $begingroup$
            @PeterForemann Yes. I calculated $phi(0)$ and $phi'(0)$ from the integral equation to avoid the lengthy substitution and integration.
            $endgroup$
            – Botond
            5 hours ago











          • $begingroup$
            Thank you for your answer! Do you mind if I ask how you got $phi ''(x) = -phi (x)$ by differentiating $phi ' (x)$? I don't understand the steps taken.
            $endgroup$
            – LightningStrike
            4 hours ago










          • $begingroup$
            @LightningStrike Do you see how did I get $phi'(x)=1-int_0^x phi(s) mathrmds$?
            $endgroup$
            – Botond
            4 hours ago















          $begingroup$
          In fact, the only valid solution for $phi(x)$ is $sin(x)$ because of the original equation.
          $endgroup$
          – Peter Foreman
          5 hours ago




          $begingroup$
          In fact, the only valid solution for $phi(x)$ is $sin(x)$ because of the original equation.
          $endgroup$
          – Peter Foreman
          5 hours ago












          $begingroup$
          @PeterForemann Yes. I calculated $phi(0)$ and $phi'(0)$ from the integral equation to avoid the lengthy substitution and integration.
          $endgroup$
          – Botond
          5 hours ago





          $begingroup$
          @PeterForemann Yes. I calculated $phi(0)$ and $phi'(0)$ from the integral equation to avoid the lengthy substitution and integration.
          $endgroup$
          – Botond
          5 hours ago













          $begingroup$
          Thank you for your answer! Do you mind if I ask how you got $phi ''(x) = -phi (x)$ by differentiating $phi ' (x)$? I don't understand the steps taken.
          $endgroup$
          – LightningStrike
          4 hours ago




          $begingroup$
          Thank you for your answer! Do you mind if I ask how you got $phi ''(x) = -phi (x)$ by differentiating $phi ' (x)$? I don't understand the steps taken.
          $endgroup$
          – LightningStrike
          4 hours ago












          $begingroup$
          @LightningStrike Do you see how did I get $phi'(x)=1-int_0^x phi(s) mathrmds$?
          $endgroup$
          – Botond
          4 hours ago




          $begingroup$
          @LightningStrike Do you see how did I get $phi'(x)=1-int_0^x phi(s) mathrmds$?
          $endgroup$
          – Botond
          4 hours ago











          1












          $begingroup$

          Differentiating both sides using Leibniz rule :



          $$phi '(x)=1-int_0^xphi (s)ds$$



          Differentiate again:



          $$phi ''(x)=-phi (x)$$






          share|cite|improve this answer











          $endgroup$








          • 1




            $begingroup$
            Your answer is great, but Leibniz's rule is an overkill here, because it requires partial derivatives and the proof is based on measure theory.
            $endgroup$
            – Botond
            4 hours ago










          • $begingroup$
            may be you are right...but this is a common technique in an introductory course of integral equations.
            $endgroup$
            – logo
            4 hours ago











          • $begingroup$
            I didn't take any course in integral equations, but we used Leibniz's rule during a physics course (without a proof), and it's a really useful tool to have. And we don't really know which is the appropriate solution to the questioner.
            $endgroup$
            – Botond
            4 hours ago
















          1












          $begingroup$

          Differentiating both sides using Leibniz rule :



          $$phi '(x)=1-int_0^xphi (s)ds$$



          Differentiate again:



          $$phi ''(x)=-phi (x)$$






          share|cite|improve this answer











          $endgroup$








          • 1




            $begingroup$
            Your answer is great, but Leibniz's rule is an overkill here, because it requires partial derivatives and the proof is based on measure theory.
            $endgroup$
            – Botond
            4 hours ago










          • $begingroup$
            may be you are right...but this is a common technique in an introductory course of integral equations.
            $endgroup$
            – logo
            4 hours ago











          • $begingroup$
            I didn't take any course in integral equations, but we used Leibniz's rule during a physics course (without a proof), and it's a really useful tool to have. And we don't really know which is the appropriate solution to the questioner.
            $endgroup$
            – Botond
            4 hours ago














          1












          1








          1





          $begingroup$

          Differentiating both sides using Leibniz rule :



          $$phi '(x)=1-int_0^xphi (s)ds$$



          Differentiate again:



          $$phi ''(x)=-phi (x)$$






          share|cite|improve this answer











          $endgroup$



          Differentiating both sides using Leibniz rule :



          $$phi '(x)=1-int_0^xphi (s)ds$$



          Differentiate again:



          $$phi ''(x)=-phi (x)$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 5 hours ago

























          answered 5 hours ago









          logologo

          1048




          1048







          • 1




            $begingroup$
            Your answer is great, but Leibniz's rule is an overkill here, because it requires partial derivatives and the proof is based on measure theory.
            $endgroup$
            – Botond
            4 hours ago










          • $begingroup$
            may be you are right...but this is a common technique in an introductory course of integral equations.
            $endgroup$
            – logo
            4 hours ago











          • $begingroup$
            I didn't take any course in integral equations, but we used Leibniz's rule during a physics course (without a proof), and it's a really useful tool to have. And we don't really know which is the appropriate solution to the questioner.
            $endgroup$
            – Botond
            4 hours ago













          • 1




            $begingroup$
            Your answer is great, but Leibniz's rule is an overkill here, because it requires partial derivatives and the proof is based on measure theory.
            $endgroup$
            – Botond
            4 hours ago










          • $begingroup$
            may be you are right...but this is a common technique in an introductory course of integral equations.
            $endgroup$
            – logo
            4 hours ago











          • $begingroup$
            I didn't take any course in integral equations, but we used Leibniz's rule during a physics course (without a proof), and it's a really useful tool to have. And we don't really know which is the appropriate solution to the questioner.
            $endgroup$
            – Botond
            4 hours ago








          1




          1




          $begingroup$
          Your answer is great, but Leibniz's rule is an overkill here, because it requires partial derivatives and the proof is based on measure theory.
          $endgroup$
          – Botond
          4 hours ago




          $begingroup$
          Your answer is great, but Leibniz's rule is an overkill here, because it requires partial derivatives and the proof is based on measure theory.
          $endgroup$
          – Botond
          4 hours ago












          $begingroup$
          may be you are right...but this is a common technique in an introductory course of integral equations.
          $endgroup$
          – logo
          4 hours ago





          $begingroup$
          may be you are right...but this is a common technique in an introductory course of integral equations.
          $endgroup$
          – logo
          4 hours ago













          $begingroup$
          I didn't take any course in integral equations, but we used Leibniz's rule during a physics course (without a proof), and it's a really useful tool to have. And we don't really know which is the appropriate solution to the questioner.
          $endgroup$
          – Botond
          4 hours ago





          $begingroup$
          I didn't take any course in integral equations, but we used Leibniz's rule during a physics course (without a proof), and it's a really useful tool to have. And we don't really know which is the appropriate solution to the questioner.
          $endgroup$
          – Botond
          4 hours ago


















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167442%2fsolving-integral-equation-by-converting-to-differential-equations%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Are there any AGPL-style licences that require source code modifications to be public? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Force derivative works to be publicAre there any GPL like licenses for Apple App Store?Do you violate the GPL if you provide source code that cannot be compiled?GPL - is it distribution to use libraries in an appliance loaned to customers?Distributing App for free which uses GPL'ed codeModifications of server software under GPL, with web/CLI interfaceDoes using an AGPLv3-licensed library prevent me from dual-licensing my own source code?Can I publish only select code under GPLv3 from a private project?Is there published precedent regarding the scope of covered work that uses AGPL software?If MIT licensed code links to GPL licensed code what should be the license of the resulting binary program?If I use a public API endpoint that has its source code licensed under AGPL in my app, do I need to disclose my source?

          2013 GY136 Descoberta | Órbita | Referências Menu de navegação«List Of Centaurs and Scattered-Disk Objects»«List of Known Trans-Neptunian Objects»

          Metrô de Los Teques Índice Linhas | Estações | Ver também | Referências Ligações externas | Menu de navegação«INSTITUCIÓN»«Mapa de rutas»originalMetrô de Los TequesC.A. Metro Los Teques |Alcaldía de Guaicaipuro – Sitio OficialGobernacion de Mirandaeeeeeee