Closed subgroups of abelian groupsEmbedded Lie subgroups are closed.The injectivity of torus in the category of abelian Lie groupsCenter of compact lie group closed?Closedness of connected semisimple Lie subgroups of semisimple groupsIntersection of a family of closed Lie subgroupsExamples about maximal Abelian subgroup is not a maximal torus in compact connected Lie group $G$.A question on abelian Lie groups and maximal compact subgroupReal and complex nilpotent Lie groupsClosed Subgroups of Lie Groups are closed Lie Subgroups?Lattice and abelian Lie groups

Is there a minimum number of transactions in a block?

Can Medicine checks be used, with decent rolls, to completely mitigate the risk of death from ongoing damage?

Can I make popcorn with any corn?

A newer friend of my brother's gave him a load of baseball cards that are supposedly extremely valuable. Is this a scam?

Extreme, but not acceptable situation and I can't start the work tomorrow morning

Shell script can be run only with sh command

Why don't electron-positron collisions release infinite energy?

Schwarzchild Radius of the Universe

How does one intimidate enemies without having the capacity for violence?

Prevent a directory in /tmp from being deleted

What do you call a Matrix-like slowdown and camera movement effect?

XeLaTeX and pdfLaTeX ignore hyphenation

Is there really no realistic way for a skeleton monster to move around without magic?

cryptic clue: mammal sounds like relative consumer (8)

Patience, young "Padovan"

What would happen to a modern skyscraper if it rains micro blackholes?

Is it possible to make sharp wind that can cut stuff from afar?

Should I join an office cleaning event for free?

Simulate Bitwise Cyclic Tag

Is it legal to have the "// (c) 2019 John Smith" header in all files when there are hundreds of contributors?

The magic money tree problem

Why is "Reports" in sentence down without "The"

Are tax years 2016 & 2017 back taxes deductible for tax year 2018?

DOS, create pipe for stdin/stdout of command.com(or 4dos.com) in C or Batch?



Closed subgroups of abelian groups


Embedded Lie subgroups are closed.The injectivity of torus in the category of abelian Lie groupsCenter of compact lie group closed?Closedness of connected semisimple Lie subgroups of semisimple groupsIntersection of a family of closed Lie subgroupsExamples about maximal Abelian subgroup is not a maximal torus in compact connected Lie group $G$.A question on abelian Lie groups and maximal compact subgroupReal and complex nilpotent Lie groupsClosed Subgroups of Lie Groups are closed Lie Subgroups?Lattice and abelian Lie groups













2












$begingroup$


What is an example of an abelian Lie group $G$ and a closed subgroup $H$ such that $Gnotcong G/H times H$?



Would the circle $S^1$ in $mathbb R^2$ be an example? what is $mathbb R^2/S^1$?










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    Isn't $G=mathbbR$ and $H=mathbbZ$ an example of the non-iso you want? All you need to show is that $mathbbR$ is not iso to $S^1 times mathbbZ$. That's easy.
    $endgroup$
    – Randall
    2 hours ago
















2












$begingroup$


What is an example of an abelian Lie group $G$ and a closed subgroup $H$ such that $Gnotcong G/H times H$?



Would the circle $S^1$ in $mathbb R^2$ be an example? what is $mathbb R^2/S^1$?










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    Isn't $G=mathbbR$ and $H=mathbbZ$ an example of the non-iso you want? All you need to show is that $mathbbR$ is not iso to $S^1 times mathbbZ$. That's easy.
    $endgroup$
    – Randall
    2 hours ago














2












2








2





$begingroup$


What is an example of an abelian Lie group $G$ and a closed subgroup $H$ such that $Gnotcong G/H times H$?



Would the circle $S^1$ in $mathbb R^2$ be an example? what is $mathbb R^2/S^1$?










share|cite|improve this question











$endgroup$




What is an example of an abelian Lie group $G$ and a closed subgroup $H$ such that $Gnotcong G/H times H$?



Would the circle $S^1$ in $mathbb R^2$ be an example? what is $mathbb R^2/S^1$?







general-topology differential-geometry lie-groups lie-algebras






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 4 hours ago









Clayton

19.6k33288




19.6k33288










asked 4 hours ago









Amrat AAmrat A

340111




340111







  • 2




    $begingroup$
    Isn't $G=mathbbR$ and $H=mathbbZ$ an example of the non-iso you want? All you need to show is that $mathbbR$ is not iso to $S^1 times mathbbZ$. That's easy.
    $endgroup$
    – Randall
    2 hours ago













  • 2




    $begingroup$
    Isn't $G=mathbbR$ and $H=mathbbZ$ an example of the non-iso you want? All you need to show is that $mathbbR$ is not iso to $S^1 times mathbbZ$. That's easy.
    $endgroup$
    – Randall
    2 hours ago








2




2




$begingroup$
Isn't $G=mathbbR$ and $H=mathbbZ$ an example of the non-iso you want? All you need to show is that $mathbbR$ is not iso to $S^1 times mathbbZ$. That's easy.
$endgroup$
– Randall
2 hours ago





$begingroup$
Isn't $G=mathbbR$ and $H=mathbbZ$ an example of the non-iso you want? All you need to show is that $mathbbR$ is not iso to $S^1 times mathbbZ$. That's easy.
$endgroup$
– Randall
2 hours ago











2 Answers
2






active

oldest

votes


















1












$begingroup$

EDIT: To be clear I was doing the case when $H$ was assumed connected. The disconnected case is handled below by Randall.



Every connected real abelian Lie group $G$ is isomorphic to $mathbbR^mtimes (S^1)^n$ for some $n$. In fact, given $G$ you can read off $n$ and $m$ as $n=mathrmrank(pi_1(G))$ and $m=dim G-n$.



Now, if you have a short exact sequence of abelian Lie groups



$$0to Hto Gto G/Hto 0$$



Then evidentily $dim G=dim H+dim G/H$. Moreover, since this is fibration, the groups are connected, and have vanishing second homotopy groups you also get a short exact sequence



$$0to pi_1(H)topi_1(G)topi_1(G/H)to 0$$



So, $mathrmrank(pi_1(G))=mathrmrank(pi_1(H))+mathrmrank(pi_1(G/H))$. Combining these two gives that $Gcong Htimes G/H$ as desired



EDIT: Here are more details. To show that $Gcong Htimes (G/H)$ it suffices to show that



$$mathrmrk(pi_1(G))=mathrmrk(pi_1(Htimes (G/H))=mathrmrk(pi_1(G))+mathrmrk(pi_1(G/H))$$



and



$$mathrmdim(G)-mathrmrk(pi_1(G))=dim(Gtimes (G/H))-mathrmrk(pi_1(Htimes (G/H))$$



The first equality holds by remark about the long exact sequence on homotopy groups from the fibration. The second is given as follows:



$$beginaligneddim(G)-mathrmrk(pi_1(G)) &= dim(H)+dim(G/H)-(mathrmrk(pi_1(H))+mathrmrk(pi_1(G/H))\ &= dim(Gtimes G/H))-mathrmrank(pi_1(Gtimes (G/H)))endaligned$$




(Below is for the non-abelian situation)
Here's a simple interesting example.



Take $mathrmGL_2(mathbbC)$ with its center $Z:=lambda I_2:lambdainmathbbC^times$. Then, $mathrmGL_2(mathbbC)/Zcong mathrmPGL_2(mathbbC)$. To see that $mathrmGL_2(mathbbC)notcong ZtimesmathrmPGL_2(mathbbC)$ note that the derived (i.e. commutative) subgroup of the former is $mathrmSL_2(mathbbC)$ whereas the latter is $mathrmPGL_2(mathbbC)$. Of course, these groups aren't isomorphic as the former is simply connected and the latter is not.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
    $endgroup$
    – Amrat A
    4 hours ago











  • $begingroup$
    @AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
    $endgroup$
    – Alex Youcis
    3 hours ago










  • $begingroup$
    Oh yes, I just did. Thanks again!
    $endgroup$
    – Amrat A
    3 hours ago






  • 1




    $begingroup$
    @AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
    $endgroup$
    – Alex Youcis
    3 hours ago






  • 1




    $begingroup$
    @AmratA Updated.
    $endgroup$
    – Alex Youcis
    3 hours ago


















3












$begingroup$

Take $G = mathbbR$ and $H=mathbbZ$. The quotient $G/H$ is the circle $S^1$. The question is now to compare $mathbbR$ to $S^1 times mathbbZ$. Now, whether you interpret $ncong$ as "not topologically iso" or "not group iso" doesn't matter, as this is a counterexample to both at once. Topologically they are distinct as $mathbbR$ is connected but $S^1 times mathbbZ$ is not (it's a stack of circles). Algebraically they're also distinct by looking at elements of order $2$ ($mathbbR$ has none, $S^1 times mathbbZ$ has at least one).






share|cite|improve this answer









$endgroup$








  • 2




    $begingroup$
    As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
    $endgroup$
    – Alex Youcis
    1 hour ago











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3179002%2fclosed-subgroups-of-abelian-groups%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

EDIT: To be clear I was doing the case when $H$ was assumed connected. The disconnected case is handled below by Randall.



Every connected real abelian Lie group $G$ is isomorphic to $mathbbR^mtimes (S^1)^n$ for some $n$. In fact, given $G$ you can read off $n$ and $m$ as $n=mathrmrank(pi_1(G))$ and $m=dim G-n$.



Now, if you have a short exact sequence of abelian Lie groups



$$0to Hto Gto G/Hto 0$$



Then evidentily $dim G=dim H+dim G/H$. Moreover, since this is fibration, the groups are connected, and have vanishing second homotopy groups you also get a short exact sequence



$$0to pi_1(H)topi_1(G)topi_1(G/H)to 0$$



So, $mathrmrank(pi_1(G))=mathrmrank(pi_1(H))+mathrmrank(pi_1(G/H))$. Combining these two gives that $Gcong Htimes G/H$ as desired



EDIT: Here are more details. To show that $Gcong Htimes (G/H)$ it suffices to show that



$$mathrmrk(pi_1(G))=mathrmrk(pi_1(Htimes (G/H))=mathrmrk(pi_1(G))+mathrmrk(pi_1(G/H))$$



and



$$mathrmdim(G)-mathrmrk(pi_1(G))=dim(Gtimes (G/H))-mathrmrk(pi_1(Htimes (G/H))$$



The first equality holds by remark about the long exact sequence on homotopy groups from the fibration. The second is given as follows:



$$beginaligneddim(G)-mathrmrk(pi_1(G)) &= dim(H)+dim(G/H)-(mathrmrk(pi_1(H))+mathrmrk(pi_1(G/H))\ &= dim(Gtimes G/H))-mathrmrank(pi_1(Gtimes (G/H)))endaligned$$




(Below is for the non-abelian situation)
Here's a simple interesting example.



Take $mathrmGL_2(mathbbC)$ with its center $Z:=lambda I_2:lambdainmathbbC^times$. Then, $mathrmGL_2(mathbbC)/Zcong mathrmPGL_2(mathbbC)$. To see that $mathrmGL_2(mathbbC)notcong ZtimesmathrmPGL_2(mathbbC)$ note that the derived (i.e. commutative) subgroup of the former is $mathrmSL_2(mathbbC)$ whereas the latter is $mathrmPGL_2(mathbbC)$. Of course, these groups aren't isomorphic as the former is simply connected and the latter is not.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
    $endgroup$
    – Amrat A
    4 hours ago











  • $begingroup$
    @AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
    $endgroup$
    – Alex Youcis
    3 hours ago










  • $begingroup$
    Oh yes, I just did. Thanks again!
    $endgroup$
    – Amrat A
    3 hours ago






  • 1




    $begingroup$
    @AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
    $endgroup$
    – Alex Youcis
    3 hours ago






  • 1




    $begingroup$
    @AmratA Updated.
    $endgroup$
    – Alex Youcis
    3 hours ago















1












$begingroup$

EDIT: To be clear I was doing the case when $H$ was assumed connected. The disconnected case is handled below by Randall.



Every connected real abelian Lie group $G$ is isomorphic to $mathbbR^mtimes (S^1)^n$ for some $n$. In fact, given $G$ you can read off $n$ and $m$ as $n=mathrmrank(pi_1(G))$ and $m=dim G-n$.



Now, if you have a short exact sequence of abelian Lie groups



$$0to Hto Gto G/Hto 0$$



Then evidentily $dim G=dim H+dim G/H$. Moreover, since this is fibration, the groups are connected, and have vanishing second homotopy groups you also get a short exact sequence



$$0to pi_1(H)topi_1(G)topi_1(G/H)to 0$$



So, $mathrmrank(pi_1(G))=mathrmrank(pi_1(H))+mathrmrank(pi_1(G/H))$. Combining these two gives that $Gcong Htimes G/H$ as desired



EDIT: Here are more details. To show that $Gcong Htimes (G/H)$ it suffices to show that



$$mathrmrk(pi_1(G))=mathrmrk(pi_1(Htimes (G/H))=mathrmrk(pi_1(G))+mathrmrk(pi_1(G/H))$$



and



$$mathrmdim(G)-mathrmrk(pi_1(G))=dim(Gtimes (G/H))-mathrmrk(pi_1(Htimes (G/H))$$



The first equality holds by remark about the long exact sequence on homotopy groups from the fibration. The second is given as follows:



$$beginaligneddim(G)-mathrmrk(pi_1(G)) &= dim(H)+dim(G/H)-(mathrmrk(pi_1(H))+mathrmrk(pi_1(G/H))\ &= dim(Gtimes G/H))-mathrmrank(pi_1(Gtimes (G/H)))endaligned$$




(Below is for the non-abelian situation)
Here's a simple interesting example.



Take $mathrmGL_2(mathbbC)$ with its center $Z:=lambda I_2:lambdainmathbbC^times$. Then, $mathrmGL_2(mathbbC)/Zcong mathrmPGL_2(mathbbC)$. To see that $mathrmGL_2(mathbbC)notcong ZtimesmathrmPGL_2(mathbbC)$ note that the derived (i.e. commutative) subgroup of the former is $mathrmSL_2(mathbbC)$ whereas the latter is $mathrmPGL_2(mathbbC)$. Of course, these groups aren't isomorphic as the former is simply connected and the latter is not.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
    $endgroup$
    – Amrat A
    4 hours ago











  • $begingroup$
    @AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
    $endgroup$
    – Alex Youcis
    3 hours ago










  • $begingroup$
    Oh yes, I just did. Thanks again!
    $endgroup$
    – Amrat A
    3 hours ago






  • 1




    $begingroup$
    @AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
    $endgroup$
    – Alex Youcis
    3 hours ago






  • 1




    $begingroup$
    @AmratA Updated.
    $endgroup$
    – Alex Youcis
    3 hours ago













1












1








1





$begingroup$

EDIT: To be clear I was doing the case when $H$ was assumed connected. The disconnected case is handled below by Randall.



Every connected real abelian Lie group $G$ is isomorphic to $mathbbR^mtimes (S^1)^n$ for some $n$. In fact, given $G$ you can read off $n$ and $m$ as $n=mathrmrank(pi_1(G))$ and $m=dim G-n$.



Now, if you have a short exact sequence of abelian Lie groups



$$0to Hto Gto G/Hto 0$$



Then evidentily $dim G=dim H+dim G/H$. Moreover, since this is fibration, the groups are connected, and have vanishing second homotopy groups you also get a short exact sequence



$$0to pi_1(H)topi_1(G)topi_1(G/H)to 0$$



So, $mathrmrank(pi_1(G))=mathrmrank(pi_1(H))+mathrmrank(pi_1(G/H))$. Combining these two gives that $Gcong Htimes G/H$ as desired



EDIT: Here are more details. To show that $Gcong Htimes (G/H)$ it suffices to show that



$$mathrmrk(pi_1(G))=mathrmrk(pi_1(Htimes (G/H))=mathrmrk(pi_1(G))+mathrmrk(pi_1(G/H))$$



and



$$mathrmdim(G)-mathrmrk(pi_1(G))=dim(Gtimes (G/H))-mathrmrk(pi_1(Htimes (G/H))$$



The first equality holds by remark about the long exact sequence on homotopy groups from the fibration. The second is given as follows:



$$beginaligneddim(G)-mathrmrk(pi_1(G)) &= dim(H)+dim(G/H)-(mathrmrk(pi_1(H))+mathrmrk(pi_1(G/H))\ &= dim(Gtimes G/H))-mathrmrank(pi_1(Gtimes (G/H)))endaligned$$




(Below is for the non-abelian situation)
Here's a simple interesting example.



Take $mathrmGL_2(mathbbC)$ with its center $Z:=lambda I_2:lambdainmathbbC^times$. Then, $mathrmGL_2(mathbbC)/Zcong mathrmPGL_2(mathbbC)$. To see that $mathrmGL_2(mathbbC)notcong ZtimesmathrmPGL_2(mathbbC)$ note that the derived (i.e. commutative) subgroup of the former is $mathrmSL_2(mathbbC)$ whereas the latter is $mathrmPGL_2(mathbbC)$. Of course, these groups aren't isomorphic as the former is simply connected and the latter is not.






share|cite|improve this answer











$endgroup$



EDIT: To be clear I was doing the case when $H$ was assumed connected. The disconnected case is handled below by Randall.



Every connected real abelian Lie group $G$ is isomorphic to $mathbbR^mtimes (S^1)^n$ for some $n$. In fact, given $G$ you can read off $n$ and $m$ as $n=mathrmrank(pi_1(G))$ and $m=dim G-n$.



Now, if you have a short exact sequence of abelian Lie groups



$$0to Hto Gto G/Hto 0$$



Then evidentily $dim G=dim H+dim G/H$. Moreover, since this is fibration, the groups are connected, and have vanishing second homotopy groups you also get a short exact sequence



$$0to pi_1(H)topi_1(G)topi_1(G/H)to 0$$



So, $mathrmrank(pi_1(G))=mathrmrank(pi_1(H))+mathrmrank(pi_1(G/H))$. Combining these two gives that $Gcong Htimes G/H$ as desired



EDIT: Here are more details. To show that $Gcong Htimes (G/H)$ it suffices to show that



$$mathrmrk(pi_1(G))=mathrmrk(pi_1(Htimes (G/H))=mathrmrk(pi_1(G))+mathrmrk(pi_1(G/H))$$



and



$$mathrmdim(G)-mathrmrk(pi_1(G))=dim(Gtimes (G/H))-mathrmrk(pi_1(Htimes (G/H))$$



The first equality holds by remark about the long exact sequence on homotopy groups from the fibration. The second is given as follows:



$$beginaligneddim(G)-mathrmrk(pi_1(G)) &= dim(H)+dim(G/H)-(mathrmrk(pi_1(H))+mathrmrk(pi_1(G/H))\ &= dim(Gtimes G/H))-mathrmrank(pi_1(Gtimes (G/H)))endaligned$$




(Below is for the non-abelian situation)
Here's a simple interesting example.



Take $mathrmGL_2(mathbbC)$ with its center $Z:=lambda I_2:lambdainmathbbC^times$. Then, $mathrmGL_2(mathbbC)/Zcong mathrmPGL_2(mathbbC)$. To see that $mathrmGL_2(mathbbC)notcong ZtimesmathrmPGL_2(mathbbC)$ note that the derived (i.e. commutative) subgroup of the former is $mathrmSL_2(mathbbC)$ whereas the latter is $mathrmPGL_2(mathbbC)$. Of course, these groups aren't isomorphic as the former is simply connected and the latter is not.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 1 hour ago

























answered 4 hours ago









Alex YoucisAlex Youcis

36k775115




36k775115











  • $begingroup$
    Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
    $endgroup$
    – Amrat A
    4 hours ago











  • $begingroup$
    @AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
    $endgroup$
    – Alex Youcis
    3 hours ago










  • $begingroup$
    Oh yes, I just did. Thanks again!
    $endgroup$
    – Amrat A
    3 hours ago






  • 1




    $begingroup$
    @AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
    $endgroup$
    – Alex Youcis
    3 hours ago






  • 1




    $begingroup$
    @AmratA Updated.
    $endgroup$
    – Alex Youcis
    3 hours ago
















  • $begingroup$
    Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
    $endgroup$
    – Amrat A
    4 hours ago











  • $begingroup$
    @AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
    $endgroup$
    – Alex Youcis
    3 hours ago










  • $begingroup$
    Oh yes, I just did. Thanks again!
    $endgroup$
    – Amrat A
    3 hours ago






  • 1




    $begingroup$
    @AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
    $endgroup$
    – Alex Youcis
    3 hours ago






  • 1




    $begingroup$
    @AmratA Updated.
    $endgroup$
    – Alex Youcis
    3 hours ago















$begingroup$
Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
$endgroup$
– Amrat A
4 hours ago





$begingroup$
Thank you very much Alex. So the bundle $Gto G/H$ is always trivial!
$endgroup$
– Amrat A
4 hours ago













$begingroup$
@AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
$endgroup$
– Alex Youcis
3 hours ago




$begingroup$
@AmratA No problem. Did you see the updated affirmative answer to the abelian situation?
$endgroup$
– Alex Youcis
3 hours ago












$begingroup$
Oh yes, I just did. Thanks again!
$endgroup$
– Amrat A
3 hours ago




$begingroup$
Oh yes, I just did. Thanks again!
$endgroup$
– Amrat A
3 hours ago




1




1




$begingroup$
@AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
$endgroup$
– Alex Youcis
3 hours ago




$begingroup$
@AmratA This is not true. Be careful, I didn't even necessarily claim that the fibration is trivial in my proof. I just proved that abstractly $Gcong Htimes (G/H)$, not that the sequence splits.
$endgroup$
– Alex Youcis
3 hours ago




1




1




$begingroup$
@AmratA Updated.
$endgroup$
– Alex Youcis
3 hours ago




$begingroup$
@AmratA Updated.
$endgroup$
– Alex Youcis
3 hours ago











3












$begingroup$

Take $G = mathbbR$ and $H=mathbbZ$. The quotient $G/H$ is the circle $S^1$. The question is now to compare $mathbbR$ to $S^1 times mathbbZ$. Now, whether you interpret $ncong$ as "not topologically iso" or "not group iso" doesn't matter, as this is a counterexample to both at once. Topologically they are distinct as $mathbbR$ is connected but $S^1 times mathbbZ$ is not (it's a stack of circles). Algebraically they're also distinct by looking at elements of order $2$ ($mathbbR$ has none, $S^1 times mathbbZ$ has at least one).






share|cite|improve this answer









$endgroup$








  • 2




    $begingroup$
    As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
    $endgroup$
    – Alex Youcis
    1 hour ago















3












$begingroup$

Take $G = mathbbR$ and $H=mathbbZ$. The quotient $G/H$ is the circle $S^1$. The question is now to compare $mathbbR$ to $S^1 times mathbbZ$. Now, whether you interpret $ncong$ as "not topologically iso" or "not group iso" doesn't matter, as this is a counterexample to both at once. Topologically they are distinct as $mathbbR$ is connected but $S^1 times mathbbZ$ is not (it's a stack of circles). Algebraically they're also distinct by looking at elements of order $2$ ($mathbbR$ has none, $S^1 times mathbbZ$ has at least one).






share|cite|improve this answer









$endgroup$








  • 2




    $begingroup$
    As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
    $endgroup$
    – Alex Youcis
    1 hour ago













3












3








3





$begingroup$

Take $G = mathbbR$ and $H=mathbbZ$. The quotient $G/H$ is the circle $S^1$. The question is now to compare $mathbbR$ to $S^1 times mathbbZ$. Now, whether you interpret $ncong$ as "not topologically iso" or "not group iso" doesn't matter, as this is a counterexample to both at once. Topologically they are distinct as $mathbbR$ is connected but $S^1 times mathbbZ$ is not (it's a stack of circles). Algebraically they're also distinct by looking at elements of order $2$ ($mathbbR$ has none, $S^1 times mathbbZ$ has at least one).






share|cite|improve this answer









$endgroup$



Take $G = mathbbR$ and $H=mathbbZ$. The quotient $G/H$ is the circle $S^1$. The question is now to compare $mathbbR$ to $S^1 times mathbbZ$. Now, whether you interpret $ncong$ as "not topologically iso" or "not group iso" doesn't matter, as this is a counterexample to both at once. Topologically they are distinct as $mathbbR$ is connected but $S^1 times mathbbZ$ is not (it's a stack of circles). Algebraically they're also distinct by looking at elements of order $2$ ($mathbbR$ has none, $S^1 times mathbbZ$ has at least one).







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 2 hours ago









RandallRandall

10.7k11431




10.7k11431







  • 2




    $begingroup$
    As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
    $endgroup$
    – Alex Youcis
    1 hour ago












  • 2




    $begingroup$
    As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
    $endgroup$
    – Alex Youcis
    1 hour ago







2




2




$begingroup$
As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
$endgroup$
– Alex Youcis
1 hour ago




$begingroup$
As I said in response to your comment, I generally only think about connected groups, so made that assumption (perhaps unfairly for the OP). The disconnected case as you've mentioned is quite obviously no. I edited my post to reflect this.
$endgroup$
– Alex Youcis
1 hour ago

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3179002%2fclosed-subgroups-of-abelian-groups%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Are there any AGPL-style licences that require source code modifications to be public? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Force derivative works to be publicAre there any GPL like licenses for Apple App Store?Do you violate the GPL if you provide source code that cannot be compiled?GPL - is it distribution to use libraries in an appliance loaned to customers?Distributing App for free which uses GPL'ed codeModifications of server software under GPL, with web/CLI interfaceDoes using an AGPLv3-licensed library prevent me from dual-licensing my own source code?Can I publish only select code under GPLv3 from a private project?Is there published precedent regarding the scope of covered work that uses AGPL software?If MIT licensed code links to GPL licensed code what should be the license of the resulting binary program?If I use a public API endpoint that has its source code licensed under AGPL in my app, do I need to disclose my source?

2013 GY136 Descoberta | Órbita | Referências Menu de navegação«List Of Centaurs and Scattered-Disk Objects»«List of Known Trans-Neptunian Objects»

Metrô de Los Teques Índice Linhas | Estações | Ver também | Referências Ligações externas | Menu de navegação«INSTITUCIÓN»«Mapa de rutas»originalMetrô de Los TequesC.A. Metro Los Teques |Alcaldía de Guaicaipuro – Sitio OficialGobernacion de Mirandaeeeeeee