whey we use polarized capacitor?What is a decoupling capacitor and how do I know if I need one?Selecting Loading Capacitor Values for 32 kHz CrystalWhat's the use of a decoupling capacitor near a reservoir capacitor?Source of a NP 47µF 60+V capacitor for audio?Can a single, large multilayer ceramic capacitor replace the classic electrolytic + ceramic decoupling capacitor arrangement?Problem with finding capacitors' purpose in PIR circuitHow to avoid a electrolytic capacitor on a (audio) signal path?Non-Polarized Electrolytic Capacitor ReplacementInput and output oapacitor for PoE + DCDC controllerFeedback on a simple motion activated motor circuit

Are tax years 2016 & 2017 back taxes deductible for tax year 2018?

Copenhagen passport control - US citizen

Why don't electromagnetic waves interact with each other?

What is the offset in a seaplane's hull?

Can I interfere when another PC is about to be attacked?

What would the Romans have called "sorcery"?

Symplectic equivalent of commuting matrices

Is there really no realistic way for a skeleton monster to move around without magic?

A Journey Through Space and Time

How to add power-LED to my small amplifier?

How to make payment on the internet without leaving a money trail?

When blogging recipes, how can I support both readers who want the narrative/journey and ones who want the printer-friendly recipe?

How to re-create Edward Weson's Pepper No. 30?

Why did the Germans forbid the possession of pet pigeons in Rostov-on-Don in 1941?

How did the USSR manage to innovate in an environment characterized by government censorship and high bureaucracy?

Why Is Death Allowed In the Matrix?

Why CLRS example on residual networks does not follows its formula?

What typically incentivizes a professor to change jobs to a lower ranking university?

How can bays and straits be determined in a procedurally generated map?

Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?

DOS, create pipe for stdin/stdout of command.com(or 4dos.com) in C or Batch?

Draw simple lines in Inkscape

How old can references or sources in a thesis be?

Prevent a directory in /tmp from being deleted



whey we use polarized capacitor?


What is a decoupling capacitor and how do I know if I need one?Selecting Loading Capacitor Values for 32 kHz CrystalWhat's the use of a decoupling capacitor near a reservoir capacitor?Source of a NP 47µF 60+V capacitor for audio?Can a single, large multilayer ceramic capacitor replace the classic electrolytic + ceramic decoupling capacitor arrangement?Problem with finding capacitors' purpose in PIR circuitHow to avoid a electrolytic capacitor on a (audio) signal path?Non-Polarized Electrolytic Capacitor ReplacementInput and output oapacitor for PoE + DCDC controllerFeedback on a simple motion activated motor circuit






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








1












$begingroup$


I want to know is the polarized capacitor has the advantage that they are used in some circuits?
For example, in a schematic of the BISS001 PIR controller IC, in some places, a polarized capacitor is used and in some places a non-polarized capacitor one.
Can I use a non-polarized capacitor with the same voltage and capacitance instead of these polarizing capacitors?



Reference Docs:



1.BISS001 datasheet



2.HC-SR501 PIR MOTION DETECTOR datasheet



3.Grove - PIR Motion Sensor or EasyEDA link










share|improve this question









New contributor




hamid mousavi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    It's not because we want them polarized, but them being polarized is a consequence of how they'r emade.
    $endgroup$
    – Hearth
    1 hour ago










  • $begingroup$
    Compare the prices of electrolytic caps with ceramic (or film) caps in the range of 10uF ~22uF (after taking bias voltage derating into consideration) and you will have one of the reasons.
    $endgroup$
    – Wesley Lee
    1 hour ago










  • $begingroup$
    The very thin oxide layers, providing insulation for a certain polarity, provides a very compact energy storage module. Just view those useful electrolytic capacitors as early versions of self-assembled-nano-tech; the manufacturing process creates the very thin oxide layer: the oxide is GROWN or FORMED.
    $endgroup$
    – analogsystemsrf
    53 mins ago

















1












$begingroup$


I want to know is the polarized capacitor has the advantage that they are used in some circuits?
For example, in a schematic of the BISS001 PIR controller IC, in some places, a polarized capacitor is used and in some places a non-polarized capacitor one.
Can I use a non-polarized capacitor with the same voltage and capacitance instead of these polarizing capacitors?



Reference Docs:



1.BISS001 datasheet



2.HC-SR501 PIR MOTION DETECTOR datasheet



3.Grove - PIR Motion Sensor or EasyEDA link










share|improve this question









New contributor




hamid mousavi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    It's not because we want them polarized, but them being polarized is a consequence of how they'r emade.
    $endgroup$
    – Hearth
    1 hour ago










  • $begingroup$
    Compare the prices of electrolytic caps with ceramic (or film) caps in the range of 10uF ~22uF (after taking bias voltage derating into consideration) and you will have one of the reasons.
    $endgroup$
    – Wesley Lee
    1 hour ago










  • $begingroup$
    The very thin oxide layers, providing insulation for a certain polarity, provides a very compact energy storage module. Just view those useful electrolytic capacitors as early versions of self-assembled-nano-tech; the manufacturing process creates the very thin oxide layer: the oxide is GROWN or FORMED.
    $endgroup$
    – analogsystemsrf
    53 mins ago













1












1








1





$begingroup$


I want to know is the polarized capacitor has the advantage that they are used in some circuits?
For example, in a schematic of the BISS001 PIR controller IC, in some places, a polarized capacitor is used and in some places a non-polarized capacitor one.
Can I use a non-polarized capacitor with the same voltage and capacitance instead of these polarizing capacitors?



Reference Docs:



1.BISS001 datasheet



2.HC-SR501 PIR MOTION DETECTOR datasheet



3.Grove - PIR Motion Sensor or EasyEDA link










share|improve this question









New contributor




hamid mousavi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




I want to know is the polarized capacitor has the advantage that they are used in some circuits?
For example, in a schematic of the BISS001 PIR controller IC, in some places, a polarized capacitor is used and in some places a non-polarized capacitor one.
Can I use a non-polarized capacitor with the same voltage and capacitance instead of these polarizing capacitors?



Reference Docs:



1.BISS001 datasheet



2.HC-SR501 PIR MOTION DETECTOR datasheet



3.Grove - PIR Motion Sensor or EasyEDA link







capacitor circuit-design polarity






share|improve this question









New contributor




hamid mousavi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question









New contributor




hamid mousavi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question








edited 1 hour ago







hamid mousavi













New contributor




hamid mousavi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 1 hour ago









hamid mousavihamid mousavi

62




62




New contributor




hamid mousavi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





hamid mousavi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






hamid mousavi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    It's not because we want them polarized, but them being polarized is a consequence of how they'r emade.
    $endgroup$
    – Hearth
    1 hour ago










  • $begingroup$
    Compare the prices of electrolytic caps with ceramic (or film) caps in the range of 10uF ~22uF (after taking bias voltage derating into consideration) and you will have one of the reasons.
    $endgroup$
    – Wesley Lee
    1 hour ago










  • $begingroup$
    The very thin oxide layers, providing insulation for a certain polarity, provides a very compact energy storage module. Just view those useful electrolytic capacitors as early versions of self-assembled-nano-tech; the manufacturing process creates the very thin oxide layer: the oxide is GROWN or FORMED.
    $endgroup$
    – analogsystemsrf
    53 mins ago
















  • $begingroup$
    It's not because we want them polarized, but them being polarized is a consequence of how they'r emade.
    $endgroup$
    – Hearth
    1 hour ago










  • $begingroup$
    Compare the prices of electrolytic caps with ceramic (or film) caps in the range of 10uF ~22uF (after taking bias voltage derating into consideration) and you will have one of the reasons.
    $endgroup$
    – Wesley Lee
    1 hour ago










  • $begingroup$
    The very thin oxide layers, providing insulation for a certain polarity, provides a very compact energy storage module. Just view those useful electrolytic capacitors as early versions of self-assembled-nano-tech; the manufacturing process creates the very thin oxide layer: the oxide is GROWN or FORMED.
    $endgroup$
    – analogsystemsrf
    53 mins ago















$begingroup$
It's not because we want them polarized, but them being polarized is a consequence of how they'r emade.
$endgroup$
– Hearth
1 hour ago




$begingroup$
It's not because we want them polarized, but them being polarized is a consequence of how they'r emade.
$endgroup$
– Hearth
1 hour ago












$begingroup$
Compare the prices of electrolytic caps with ceramic (or film) caps in the range of 10uF ~22uF (after taking bias voltage derating into consideration) and you will have one of the reasons.
$endgroup$
– Wesley Lee
1 hour ago




$begingroup$
Compare the prices of electrolytic caps with ceramic (or film) caps in the range of 10uF ~22uF (after taking bias voltage derating into consideration) and you will have one of the reasons.
$endgroup$
– Wesley Lee
1 hour ago












$begingroup$
The very thin oxide layers, providing insulation for a certain polarity, provides a very compact energy storage module. Just view those useful electrolytic capacitors as early versions of self-assembled-nano-tech; the manufacturing process creates the very thin oxide layer: the oxide is GROWN or FORMED.
$endgroup$
– analogsystemsrf
53 mins ago




$begingroup$
The very thin oxide layers, providing insulation for a certain polarity, provides a very compact energy storage module. Just view those useful electrolytic capacitors as early versions of self-assembled-nano-tech; the manufacturing process creates the very thin oxide layer: the oxide is GROWN or FORMED.
$endgroup$
– analogsystemsrf
53 mins ago










1 Answer
1






active

oldest

votes


















4












$begingroup$

The physical size of a capacitor is a function of the thickness of the dielectric (among other things).



Early on, it was discovered that the oxides of certain metals (aluminum and tantalum in particular) made good dielectrics, and could be made very thin through a chemical process — orders of magnitude thinner than other dielectrics such as waxed/oiled paper and plastic film. Therefore, the electrolytic capacitor was invented to provide high capacitance in a reasonable volume.



Unfortunately, the chemical process requires that the voltage across the capacitor must have only a single polarity, so these capacitors are "polarized". Reversing the polarity degrades and eventually destroys the oxide layer. It's something we just have to live with in order to take advantage of this technology.






share|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("schematics", function ()
    StackExchange.schematics.init();
    );
    , "cicuitlab");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "135"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );






    hamid mousavi is a new contributor. Be nice, and check out our Code of Conduct.









    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f431310%2fwhey-we-use-polarized-capacitor%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    The physical size of a capacitor is a function of the thickness of the dielectric (among other things).



    Early on, it was discovered that the oxides of certain metals (aluminum and tantalum in particular) made good dielectrics, and could be made very thin through a chemical process — orders of magnitude thinner than other dielectrics such as waxed/oiled paper and plastic film. Therefore, the electrolytic capacitor was invented to provide high capacitance in a reasonable volume.



    Unfortunately, the chemical process requires that the voltage across the capacitor must have only a single polarity, so these capacitors are "polarized". Reversing the polarity degrades and eventually destroys the oxide layer. It's something we just have to live with in order to take advantage of this technology.






    share|improve this answer









    $endgroup$

















      4












      $begingroup$

      The physical size of a capacitor is a function of the thickness of the dielectric (among other things).



      Early on, it was discovered that the oxides of certain metals (aluminum and tantalum in particular) made good dielectrics, and could be made very thin through a chemical process — orders of magnitude thinner than other dielectrics such as waxed/oiled paper and plastic film. Therefore, the electrolytic capacitor was invented to provide high capacitance in a reasonable volume.



      Unfortunately, the chemical process requires that the voltage across the capacitor must have only a single polarity, so these capacitors are "polarized". Reversing the polarity degrades and eventually destroys the oxide layer. It's something we just have to live with in order to take advantage of this technology.






      share|improve this answer









      $endgroup$















        4












        4








        4





        $begingroup$

        The physical size of a capacitor is a function of the thickness of the dielectric (among other things).



        Early on, it was discovered that the oxides of certain metals (aluminum and tantalum in particular) made good dielectrics, and could be made very thin through a chemical process — orders of magnitude thinner than other dielectrics such as waxed/oiled paper and plastic film. Therefore, the electrolytic capacitor was invented to provide high capacitance in a reasonable volume.



        Unfortunately, the chemical process requires that the voltage across the capacitor must have only a single polarity, so these capacitors are "polarized". Reversing the polarity degrades and eventually destroys the oxide layer. It's something we just have to live with in order to take advantage of this technology.






        share|improve this answer









        $endgroup$



        The physical size of a capacitor is a function of the thickness of the dielectric (among other things).



        Early on, it was discovered that the oxides of certain metals (aluminum and tantalum in particular) made good dielectrics, and could be made very thin through a chemical process — orders of magnitude thinner than other dielectrics such as waxed/oiled paper and plastic film. Therefore, the electrolytic capacitor was invented to provide high capacitance in a reasonable volume.



        Unfortunately, the chemical process requires that the voltage across the capacitor must have only a single polarity, so these capacitors are "polarized". Reversing the polarity degrades and eventually destroys the oxide layer. It's something we just have to live with in order to take advantage of this technology.







        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered 52 mins ago









        Dave TweedDave Tweed

        123k9152266




        123k9152266




















            hamid mousavi is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            hamid mousavi is a new contributor. Be nice, and check out our Code of Conduct.












            hamid mousavi is a new contributor. Be nice, and check out our Code of Conduct.











            hamid mousavi is a new contributor. Be nice, and check out our Code of Conduct.














            Thanks for contributing an answer to Electrical Engineering Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f431310%2fwhey-we-use-polarized-capacitor%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Are there any AGPL-style licences that require source code modifications to be public? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Force derivative works to be publicAre there any GPL like licenses for Apple App Store?Do you violate the GPL if you provide source code that cannot be compiled?GPL - is it distribution to use libraries in an appliance loaned to customers?Distributing App for free which uses GPL'ed codeModifications of server software under GPL, with web/CLI interfaceDoes using an AGPLv3-licensed library prevent me from dual-licensing my own source code?Can I publish only select code under GPLv3 from a private project?Is there published precedent regarding the scope of covered work that uses AGPL software?If MIT licensed code links to GPL licensed code what should be the license of the resulting binary program?If I use a public API endpoint that has its source code licensed under AGPL in my app, do I need to disclose my source?

            2013 GY136 Descoberta | Órbita | Referências Menu de navegação«List Of Centaurs and Scattered-Disk Objects»«List of Known Trans-Neptunian Objects»

            Metrô de Los Teques Índice Linhas | Estações | Ver também | Referências Ligações externas | Menu de navegação«INSTITUCIÓN»«Mapa de rutas»originalMetrô de Los TequesC.A. Metro Los Teques |Alcaldía de Guaicaipuro – Sitio OficialGobernacion de Mirandaeeeeeee