How to use Pandas to get the count of every combination inclusiveHow to get all possible combinations of a list’s elements?How to get the ASCII value of a character?How to get the current time in PythonHow to get line count cheaply in Python?How do I get the number of elements in a list in Python?How can I count the occurrences of a list item?How to drop rows of Pandas DataFrame whose value in certain columns is NaNHow do I get the row count of a Pandas dataframe?How to iterate over rows in a DataFrame in Pandas?Get list from pandas DataFrame column headersHow to deal with SettingWithCopyWarning in Pandas?

Copenhagen passport control - US citizen

Do airline pilots ever risk not hearing communication directed to them specifically, from traffic controllers?

Email Account under attack (really) - anything I can do?

N.B. ligature in Latex

Is there a familial term for apples and pears?

New order #4: World

What is the offset in a seaplane's hull?

What typically incentivizes a professor to change jobs to a lower ranking university?

Why did the Germans forbid the possession of pet pigeons in Rostov-on-Don in 1941?

Why Is Death Allowed In the Matrix?

Chess with symmetric move-square

How can I fix this gap between bookcases I made?

I’m planning on buying a laser printer but concerned about the life cycle of toner in the machine

Finding files for which a command fails

Why is "Reports" in sentence down without "The"

What does "enim et" mean?

Patience, young "Padovan"

How to make payment on the internet without leaving a money trail?

A Journey Through Space and Time

If Manufacturer spice model and Datasheet give different values which should I use?

Closed subgroups of abelian groups

Why do we use polarized capacitor?

Can you lasso down a wizard who is using the Levitate spell?

Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?



How to use Pandas to get the count of every combination inclusive


How to get all possible combinations of a list’s elements?How to get the ASCII value of a character?How to get the current time in PythonHow to get line count cheaply in Python?How do I get the number of elements in a list in Python?How can I count the occurrences of a list item?How to drop rows of Pandas DataFrame whose value in certain columns is NaNHow do I get the row count of a Pandas dataframe?How to iterate over rows in a DataFrame in Pandas?Get list from pandas DataFrame column headersHow to deal with SettingWithCopyWarning in Pandas?






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty height:90px;width:728px;box-sizing:border-box;








8















I am trying to figure out what combination of clothing customers are buying together. I can figure out the exact combination, but the problem I can't figure out is the count that includes the combination + others.



For example, I have:



Cust_num Item Rev
Cust1 Shirt1 $40
Cust1 Shirt2 $40
Cust1 Shorts1 $40
Cust2 Shirt1 $40
Cust2 Shorts1 $40


This should result in:



Combo Count
Shirt1,Shirt2,Shorts1 1
Shirt1,Shorts1 2


The best I can do is unique combinations:



Combo Count
Shirt1,Shirt2,Shorts1 1
Shirt1,Shorts1 1


I tried:



df = df.pivot(index='Cust_num',columns='Item').sum()
df[df.notnull()] = "x"
df = df.loc[:,"Shirt1":].replace("x", pd.Series(df.columns, df.columns))
col = df.stack().groupby(level=0).apply(','.join)
df2 = pd.DataFrame(col)
df2.groupby([0]).size().reset_index(name='counts')


But that is just the unique counts.










share|improve this question







New contributor




Taylor Smith is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.















  • 2





    I feel like this is one sort of problem pandas would not be suitable for.

    – coldspeed
    2 hours ago

















8















I am trying to figure out what combination of clothing customers are buying together. I can figure out the exact combination, but the problem I can't figure out is the count that includes the combination + others.



For example, I have:



Cust_num Item Rev
Cust1 Shirt1 $40
Cust1 Shirt2 $40
Cust1 Shorts1 $40
Cust2 Shirt1 $40
Cust2 Shorts1 $40


This should result in:



Combo Count
Shirt1,Shirt2,Shorts1 1
Shirt1,Shorts1 2


The best I can do is unique combinations:



Combo Count
Shirt1,Shirt2,Shorts1 1
Shirt1,Shorts1 1


I tried:



df = df.pivot(index='Cust_num',columns='Item').sum()
df[df.notnull()] = "x"
df = df.loc[:,"Shirt1":].replace("x", pd.Series(df.columns, df.columns))
col = df.stack().groupby(level=0).apply(','.join)
df2 = pd.DataFrame(col)
df2.groupby([0]).size().reset_index(name='counts')


But that is just the unique counts.










share|improve this question







New contributor




Taylor Smith is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.















  • 2





    I feel like this is one sort of problem pandas would not be suitable for.

    – coldspeed
    2 hours ago













8












8








8








I am trying to figure out what combination of clothing customers are buying together. I can figure out the exact combination, but the problem I can't figure out is the count that includes the combination + others.



For example, I have:



Cust_num Item Rev
Cust1 Shirt1 $40
Cust1 Shirt2 $40
Cust1 Shorts1 $40
Cust2 Shirt1 $40
Cust2 Shorts1 $40


This should result in:



Combo Count
Shirt1,Shirt2,Shorts1 1
Shirt1,Shorts1 2


The best I can do is unique combinations:



Combo Count
Shirt1,Shirt2,Shorts1 1
Shirt1,Shorts1 1


I tried:



df = df.pivot(index='Cust_num',columns='Item').sum()
df[df.notnull()] = "x"
df = df.loc[:,"Shirt1":].replace("x", pd.Series(df.columns, df.columns))
col = df.stack().groupby(level=0).apply(','.join)
df2 = pd.DataFrame(col)
df2.groupby([0]).size().reset_index(name='counts')


But that is just the unique counts.










share|improve this question







New contributor




Taylor Smith is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.












I am trying to figure out what combination of clothing customers are buying together. I can figure out the exact combination, but the problem I can't figure out is the count that includes the combination + others.



For example, I have:



Cust_num Item Rev
Cust1 Shirt1 $40
Cust1 Shirt2 $40
Cust1 Shorts1 $40
Cust2 Shirt1 $40
Cust2 Shorts1 $40


This should result in:



Combo Count
Shirt1,Shirt2,Shorts1 1
Shirt1,Shorts1 2


The best I can do is unique combinations:



Combo Count
Shirt1,Shirt2,Shorts1 1
Shirt1,Shorts1 1


I tried:



df = df.pivot(index='Cust_num',columns='Item').sum()
df[df.notnull()] = "x"
df = df.loc[:,"Shirt1":].replace("x", pd.Series(df.columns, df.columns))
col = df.stack().groupby(level=0).apply(','.join)
df2 = pd.DataFrame(col)
df2.groupby([0]).size().reset_index(name='counts')


But that is just the unique counts.







python pandas






share|improve this question







New contributor




Taylor Smith is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question







New contributor




Taylor Smith is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question






New contributor




Taylor Smith is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 2 hours ago









Taylor SmithTaylor Smith

442




442




New contributor




Taylor Smith is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Taylor Smith is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Taylor Smith is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 2





    I feel like this is one sort of problem pandas would not be suitable for.

    – coldspeed
    2 hours ago












  • 2





    I feel like this is one sort of problem pandas would not be suitable for.

    – coldspeed
    2 hours ago







2




2





I feel like this is one sort of problem pandas would not be suitable for.

– coldspeed
2 hours ago





I feel like this is one sort of problem pandas would not be suitable for.

– coldspeed
2 hours ago












4 Answers
4






active

oldest

votes


















4














Using pandas.DataFrame.groupby:



grouped_item = df.groupby('Cust_num')['Item']
subsets = grouped_item.apply(lambda x: set(x)).tolist()
Count = [sum(s2.issubset(s1) for s1 in subsets) for s2 in subsets]
combo = grouped_item.apply(lambda x:','.join(x))
combo = combo.reset_index()
combo['Count']=Count


Output:



 Cust_num Item Count
0 Cust1 Shirt1,Shirt2,Shorts1 1
1 Cust2 Shirt1,Shorts1 2





share|improve this answer






























    2














    Late answer, but you can use:



    df = df.groupby(['Cust_num'], as_index=False).agg(','.join).drop(columns=['Rev']).set_index(['Item']).rename_axis("combo").rename(columns="Cust_num": "Count")
    df['Count'] = df['Count'].str.replace(r'Cust','')



    combo Count 
    Shirt1,Shirt2,Shorts1 1
    Shirt1,Shorts1 2





    share|improve this answer
































      1














      I think you need to create a combination of items first.



      How to get all possible combinations of a list’s elements?



      I used the function from Dan H's answer.



      from itertools import chain, combinations
      def all_subsets(ss):
      return chain(*map(lambda x: combinations(ss, x), range(0, len(ss)+1)))


      Then get the unique items.



      uq_items = df.Item.unique()

      list(all_subsets(uq_items))

      [(),
      ('Shirt1',),
      ('Shirt2',),
      ('Shorts1',),
      ('Shirt1', 'Shirt2'),
      ('Shirt1', 'Shorts1'),
      ('Shirt2', 'Shorts1'),
      ('Shirt1', 'Shirt2', 'Shorts1')]


      And use groupby each customer to get their items combination.



      ls = []

      for _, d in df.groupby('Cust_num', group_keys=False):
      # Get all possible subset of items
      pi = np.array(list(all_subsets(d.Item)))

      # Fliter only > 1
      ls.append(pi[[len(l) > 1 for l in pi]])


      Then convert to Series and use value_counts().



      pd.Series(np.concatenate(ls)).value_counts()

      (Shirt1, Shorts1) 2
      (Shirt2, Shorts1) 1
      (Shirt1, Shirt2, Shorts1) 1
      (Shirt1, Shirt2) 1





      share|improve this answer






























        -1














        My version which I believe is easier to understand



        new_df = df.groupby("Cust_num").agg(lambda x: ''.join(x.unique()))

        new_df ['count'] = range(1, len(new_df ) + 1)


        Output:



         Item Rev count
        <lambda> <lambda>
        Cust_num
        Cust1 Shirt1 Shirt2 Shorts1 $40 1
        Cust2 Shirt1 Shorts1 $40 2


        Since you do not need the Rev column, you can drop it:



        new_df = new_df = new_df.drop(columns=["Rev"]).reset_index()

        new_df


        Output:



         Cust_num Item count
        <lambda>
        0 Cust1 Shirt1 Shirt2 Shorts1 1
        1 Cust2 Shirt1 Shorts1 2





        share|improve this answer

























        • How is the count in your answer the count of inclusive combination of df['Item']? Making new column with range is not an answer.

          – Chris
          1 hour ago












        Your Answer






        StackExchange.ifUsing("editor", function ()
        StackExchange.using("externalEditor", function ()
        StackExchange.using("snippets", function ()
        StackExchange.snippets.init();
        );
        );
        , "code-snippets");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "1"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );






        Taylor Smith is a new contributor. Be nice, and check out our Code of Conduct.









        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55565916%2fhow-to-use-pandas-to-get-the-count-of-every-combination-inclusive%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        4 Answers
        4






        active

        oldest

        votes








        4 Answers
        4






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        4














        Using pandas.DataFrame.groupby:



        grouped_item = df.groupby('Cust_num')['Item']
        subsets = grouped_item.apply(lambda x: set(x)).tolist()
        Count = [sum(s2.issubset(s1) for s1 in subsets) for s2 in subsets]
        combo = grouped_item.apply(lambda x:','.join(x))
        combo = combo.reset_index()
        combo['Count']=Count


        Output:



         Cust_num Item Count
        0 Cust1 Shirt1,Shirt2,Shorts1 1
        1 Cust2 Shirt1,Shorts1 2





        share|improve this answer



























          4














          Using pandas.DataFrame.groupby:



          grouped_item = df.groupby('Cust_num')['Item']
          subsets = grouped_item.apply(lambda x: set(x)).tolist()
          Count = [sum(s2.issubset(s1) for s1 in subsets) for s2 in subsets]
          combo = grouped_item.apply(lambda x:','.join(x))
          combo = combo.reset_index()
          combo['Count']=Count


          Output:



           Cust_num Item Count
          0 Cust1 Shirt1,Shirt2,Shorts1 1
          1 Cust2 Shirt1,Shorts1 2





          share|improve this answer

























            4












            4








            4







            Using pandas.DataFrame.groupby:



            grouped_item = df.groupby('Cust_num')['Item']
            subsets = grouped_item.apply(lambda x: set(x)).tolist()
            Count = [sum(s2.issubset(s1) for s1 in subsets) for s2 in subsets]
            combo = grouped_item.apply(lambda x:','.join(x))
            combo = combo.reset_index()
            combo['Count']=Count


            Output:



             Cust_num Item Count
            0 Cust1 Shirt1,Shirt2,Shorts1 1
            1 Cust2 Shirt1,Shorts1 2





            share|improve this answer













            Using pandas.DataFrame.groupby:



            grouped_item = df.groupby('Cust_num')['Item']
            subsets = grouped_item.apply(lambda x: set(x)).tolist()
            Count = [sum(s2.issubset(s1) for s1 in subsets) for s2 in subsets]
            combo = grouped_item.apply(lambda x:','.join(x))
            combo = combo.reset_index()
            combo['Count']=Count


            Output:



             Cust_num Item Count
            0 Cust1 Shirt1,Shirt2,Shorts1 1
            1 Cust2 Shirt1,Shorts1 2






            share|improve this answer












            share|improve this answer



            share|improve this answer










            answered 2 hours ago









            ChrisChris

            3,710422




            3,710422























                2














                Late answer, but you can use:



                df = df.groupby(['Cust_num'], as_index=False).agg(','.join).drop(columns=['Rev']).set_index(['Item']).rename_axis("combo").rename(columns="Cust_num": "Count")
                df['Count'] = df['Count'].str.replace(r'Cust','')



                combo Count 
                Shirt1,Shirt2,Shorts1 1
                Shirt1,Shorts1 2





                share|improve this answer





























                  2














                  Late answer, but you can use:



                  df = df.groupby(['Cust_num'], as_index=False).agg(','.join).drop(columns=['Rev']).set_index(['Item']).rename_axis("combo").rename(columns="Cust_num": "Count")
                  df['Count'] = df['Count'].str.replace(r'Cust','')



                  combo Count 
                  Shirt1,Shirt2,Shorts1 1
                  Shirt1,Shorts1 2





                  share|improve this answer



























                    2












                    2








                    2







                    Late answer, but you can use:



                    df = df.groupby(['Cust_num'], as_index=False).agg(','.join).drop(columns=['Rev']).set_index(['Item']).rename_axis("combo").rename(columns="Cust_num": "Count")
                    df['Count'] = df['Count'].str.replace(r'Cust','')



                    combo Count 
                    Shirt1,Shirt2,Shorts1 1
                    Shirt1,Shorts1 2





                    share|improve this answer















                    Late answer, but you can use:



                    df = df.groupby(['Cust_num'], as_index=False).agg(','.join).drop(columns=['Rev']).set_index(['Item']).rename_axis("combo").rename(columns="Cust_num": "Count")
                    df['Count'] = df['Count'].str.replace(r'Cust','')



                    combo Count 
                    Shirt1,Shirt2,Shorts1 1
                    Shirt1,Shorts1 2






                    share|improve this answer














                    share|improve this answer



                    share|improve this answer








                    edited 1 hour ago

























                    answered 1 hour ago









                    Pedro LobitoPedro Lobito

                    50.5k16138172




                    50.5k16138172





















                        1














                        I think you need to create a combination of items first.



                        How to get all possible combinations of a list’s elements?



                        I used the function from Dan H's answer.



                        from itertools import chain, combinations
                        def all_subsets(ss):
                        return chain(*map(lambda x: combinations(ss, x), range(0, len(ss)+1)))


                        Then get the unique items.



                        uq_items = df.Item.unique()

                        list(all_subsets(uq_items))

                        [(),
                        ('Shirt1',),
                        ('Shirt2',),
                        ('Shorts1',),
                        ('Shirt1', 'Shirt2'),
                        ('Shirt1', 'Shorts1'),
                        ('Shirt2', 'Shorts1'),
                        ('Shirt1', 'Shirt2', 'Shorts1')]


                        And use groupby each customer to get their items combination.



                        ls = []

                        for _, d in df.groupby('Cust_num', group_keys=False):
                        # Get all possible subset of items
                        pi = np.array(list(all_subsets(d.Item)))

                        # Fliter only > 1
                        ls.append(pi[[len(l) > 1 for l in pi]])


                        Then convert to Series and use value_counts().



                        pd.Series(np.concatenate(ls)).value_counts()

                        (Shirt1, Shorts1) 2
                        (Shirt2, Shorts1) 1
                        (Shirt1, Shirt2, Shorts1) 1
                        (Shirt1, Shirt2) 1





                        share|improve this answer



























                          1














                          I think you need to create a combination of items first.



                          How to get all possible combinations of a list’s elements?



                          I used the function from Dan H's answer.



                          from itertools import chain, combinations
                          def all_subsets(ss):
                          return chain(*map(lambda x: combinations(ss, x), range(0, len(ss)+1)))


                          Then get the unique items.



                          uq_items = df.Item.unique()

                          list(all_subsets(uq_items))

                          [(),
                          ('Shirt1',),
                          ('Shirt2',),
                          ('Shorts1',),
                          ('Shirt1', 'Shirt2'),
                          ('Shirt1', 'Shorts1'),
                          ('Shirt2', 'Shorts1'),
                          ('Shirt1', 'Shirt2', 'Shorts1')]


                          And use groupby each customer to get their items combination.



                          ls = []

                          for _, d in df.groupby('Cust_num', group_keys=False):
                          # Get all possible subset of items
                          pi = np.array(list(all_subsets(d.Item)))

                          # Fliter only > 1
                          ls.append(pi[[len(l) > 1 for l in pi]])


                          Then convert to Series and use value_counts().



                          pd.Series(np.concatenate(ls)).value_counts()

                          (Shirt1, Shorts1) 2
                          (Shirt2, Shorts1) 1
                          (Shirt1, Shirt2, Shorts1) 1
                          (Shirt1, Shirt2) 1





                          share|improve this answer

























                            1












                            1








                            1







                            I think you need to create a combination of items first.



                            How to get all possible combinations of a list’s elements?



                            I used the function from Dan H's answer.



                            from itertools import chain, combinations
                            def all_subsets(ss):
                            return chain(*map(lambda x: combinations(ss, x), range(0, len(ss)+1)))


                            Then get the unique items.



                            uq_items = df.Item.unique()

                            list(all_subsets(uq_items))

                            [(),
                            ('Shirt1',),
                            ('Shirt2',),
                            ('Shorts1',),
                            ('Shirt1', 'Shirt2'),
                            ('Shirt1', 'Shorts1'),
                            ('Shirt2', 'Shorts1'),
                            ('Shirt1', 'Shirt2', 'Shorts1')]


                            And use groupby each customer to get their items combination.



                            ls = []

                            for _, d in df.groupby('Cust_num', group_keys=False):
                            # Get all possible subset of items
                            pi = np.array(list(all_subsets(d.Item)))

                            # Fliter only > 1
                            ls.append(pi[[len(l) > 1 for l in pi]])


                            Then convert to Series and use value_counts().



                            pd.Series(np.concatenate(ls)).value_counts()

                            (Shirt1, Shorts1) 2
                            (Shirt2, Shorts1) 1
                            (Shirt1, Shirt2, Shorts1) 1
                            (Shirt1, Shirt2) 1





                            share|improve this answer













                            I think you need to create a combination of items first.



                            How to get all possible combinations of a list’s elements?



                            I used the function from Dan H's answer.



                            from itertools import chain, combinations
                            def all_subsets(ss):
                            return chain(*map(lambda x: combinations(ss, x), range(0, len(ss)+1)))


                            Then get the unique items.



                            uq_items = df.Item.unique()

                            list(all_subsets(uq_items))

                            [(),
                            ('Shirt1',),
                            ('Shirt2',),
                            ('Shorts1',),
                            ('Shirt1', 'Shirt2'),
                            ('Shirt1', 'Shorts1'),
                            ('Shirt2', 'Shorts1'),
                            ('Shirt1', 'Shirt2', 'Shorts1')]


                            And use groupby each customer to get their items combination.



                            ls = []

                            for _, d in df.groupby('Cust_num', group_keys=False):
                            # Get all possible subset of items
                            pi = np.array(list(all_subsets(d.Item)))

                            # Fliter only > 1
                            ls.append(pi[[len(l) > 1 for l in pi]])


                            Then convert to Series and use value_counts().



                            pd.Series(np.concatenate(ls)).value_counts()

                            (Shirt1, Shorts1) 2
                            (Shirt2, Shorts1) 1
                            (Shirt1, Shirt2, Shorts1) 1
                            (Shirt1, Shirt2) 1






                            share|improve this answer












                            share|improve this answer



                            share|improve this answer










                            answered 1 hour ago









                            ResidentSleeperResidentSleeper

                            36210




                            36210





















                                -1














                                My version which I believe is easier to understand



                                new_df = df.groupby("Cust_num").agg(lambda x: ''.join(x.unique()))

                                new_df ['count'] = range(1, len(new_df ) + 1)


                                Output:



                                 Item Rev count
                                <lambda> <lambda>
                                Cust_num
                                Cust1 Shirt1 Shirt2 Shorts1 $40 1
                                Cust2 Shirt1 Shorts1 $40 2


                                Since you do not need the Rev column, you can drop it:



                                new_df = new_df = new_df.drop(columns=["Rev"]).reset_index()

                                new_df


                                Output:



                                 Cust_num Item count
                                <lambda>
                                0 Cust1 Shirt1 Shirt2 Shorts1 1
                                1 Cust2 Shirt1 Shorts1 2





                                share|improve this answer

























                                • How is the count in your answer the count of inclusive combination of df['Item']? Making new column with range is not an answer.

                                  – Chris
                                  1 hour ago
















                                -1














                                My version which I believe is easier to understand



                                new_df = df.groupby("Cust_num").agg(lambda x: ''.join(x.unique()))

                                new_df ['count'] = range(1, len(new_df ) + 1)


                                Output:



                                 Item Rev count
                                <lambda> <lambda>
                                Cust_num
                                Cust1 Shirt1 Shirt2 Shorts1 $40 1
                                Cust2 Shirt1 Shorts1 $40 2


                                Since you do not need the Rev column, you can drop it:



                                new_df = new_df = new_df.drop(columns=["Rev"]).reset_index()

                                new_df


                                Output:



                                 Cust_num Item count
                                <lambda>
                                0 Cust1 Shirt1 Shirt2 Shorts1 1
                                1 Cust2 Shirt1 Shorts1 2





                                share|improve this answer

























                                • How is the count in your answer the count of inclusive combination of df['Item']? Making new column with range is not an answer.

                                  – Chris
                                  1 hour ago














                                -1












                                -1








                                -1







                                My version which I believe is easier to understand



                                new_df = df.groupby("Cust_num").agg(lambda x: ''.join(x.unique()))

                                new_df ['count'] = range(1, len(new_df ) + 1)


                                Output:



                                 Item Rev count
                                <lambda> <lambda>
                                Cust_num
                                Cust1 Shirt1 Shirt2 Shorts1 $40 1
                                Cust2 Shirt1 Shorts1 $40 2


                                Since you do not need the Rev column, you can drop it:



                                new_df = new_df = new_df.drop(columns=["Rev"]).reset_index()

                                new_df


                                Output:



                                 Cust_num Item count
                                <lambda>
                                0 Cust1 Shirt1 Shirt2 Shorts1 1
                                1 Cust2 Shirt1 Shorts1 2





                                share|improve this answer















                                My version which I believe is easier to understand



                                new_df = df.groupby("Cust_num").agg(lambda x: ''.join(x.unique()))

                                new_df ['count'] = range(1, len(new_df ) + 1)


                                Output:



                                 Item Rev count
                                <lambda> <lambda>
                                Cust_num
                                Cust1 Shirt1 Shirt2 Shorts1 $40 1
                                Cust2 Shirt1 Shorts1 $40 2


                                Since you do not need the Rev column, you can drop it:



                                new_df = new_df = new_df.drop(columns=["Rev"]).reset_index()

                                new_df


                                Output:



                                 Cust_num Item count
                                <lambda>
                                0 Cust1 Shirt1 Shirt2 Shorts1 1
                                1 Cust2 Shirt1 Shorts1 2






                                share|improve this answer














                                share|improve this answer



                                share|improve this answer








                                edited 1 hour ago

























                                answered 1 hour ago









                                Lee MtotiLee Mtoti

                                13110




                                13110












                                • How is the count in your answer the count of inclusive combination of df['Item']? Making new column with range is not an answer.

                                  – Chris
                                  1 hour ago


















                                • How is the count in your answer the count of inclusive combination of df['Item']? Making new column with range is not an answer.

                                  – Chris
                                  1 hour ago

















                                How is the count in your answer the count of inclusive combination of df['Item']? Making new column with range is not an answer.

                                – Chris
                                1 hour ago






                                How is the count in your answer the count of inclusive combination of df['Item']? Making new column with range is not an answer.

                                – Chris
                                1 hour ago











                                Taylor Smith is a new contributor. Be nice, and check out our Code of Conduct.









                                draft saved

                                draft discarded


















                                Taylor Smith is a new contributor. Be nice, and check out our Code of Conduct.












                                Taylor Smith is a new contributor. Be nice, and check out our Code of Conduct.











                                Taylor Smith is a new contributor. Be nice, and check out our Code of Conduct.














                                Thanks for contributing an answer to Stack Overflow!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55565916%2fhow-to-use-pandas-to-get-the-count-of-every-combination-inclusive%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Are there any AGPL-style licences that require source code modifications to be public? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Force derivative works to be publicAre there any GPL like licenses for Apple App Store?Do you violate the GPL if you provide source code that cannot be compiled?GPL - is it distribution to use libraries in an appliance loaned to customers?Distributing App for free which uses GPL'ed codeModifications of server software under GPL, with web/CLI interfaceDoes using an AGPLv3-licensed library prevent me from dual-licensing my own source code?Can I publish only select code under GPLv3 from a private project?Is there published precedent regarding the scope of covered work that uses AGPL software?If MIT licensed code links to GPL licensed code what should be the license of the resulting binary program?If I use a public API endpoint that has its source code licensed under AGPL in my app, do I need to disclose my source?

                                2013 GY136 Descoberta | Órbita | Referências Menu de navegação«List Of Centaurs and Scattered-Disk Objects»«List of Known Trans-Neptunian Objects»

                                Mortes em março de 2019 Referências Menu de navegação«Zhores Alferov, Nobel de Física bielorrusso, morre aos 88 anos - Ciência»«Fallece Rafael Torija, o bispo emérito de Ciudad Real»«Peter Hurford dies at 88»«Keith Flint, vocalista do The Prodigy, morre aos 49 anos»«Luke Perry, ator de 'Barrados no baile' e 'Riverdale', morre aos 52 anos»«Former Rangers and Scotland captain Eric Caldow dies, aged 84»«Morreu, aos 61 anos, a antiga lenda do wrestling King Kong Bundy»«Fallece el actor y director teatral Abraham Stavans»«In Memoriam Guillaume Faye»«Sidney Sheinberg, a Force Behind Universal and Spielberg, Is Dead at 84»«Carmine Persico, Colombo Crime Family Boss, Is Dead at 85»«Dirigent Michael Gielen gestorben»«Ciclista tricampeã mundial e prata na Rio 2016 é encontrada morta em casa aos 23 anos»«Pagan Community Notes: Raven Grimassi dies, Indianapolis pop-up event cancelled, Circle Sanctuary announces new podcast, and more!»«Hal Blaine, Wrecking Crew Drummer, Dies at 90»«Morre Coutinho, que editou dupla lendária com Pelé no Santos»«Cantor Demétrius, ídolo da Jovem Guarda, morre em SP»«Ex-presidente do Vasco, Eurico Miranda morre no Rio de Janeiro»«Bronze no Mundial de basquete de 1971, Laís Elena morre aos 76 anos»«Diretor de Corridas da F1, Charlie Whiting morre aos 66 anos às vésperas do GP da Austrália»«Morreu o cardeal Danneels, da Bélgica»«Morreu o cartoonista Augusto Cid»«Morreu a atriz Maria Isabel de Lizandra, de "Vale Tudo" e novelas da Tupi»«WS Merwin, prize-winning poet of nature, dies at 91»«Atriz Márcia Real morre em São Paulo aos 88 anos»«Mauritanie: décès de l'ancien président Mohamed Mahmoud ould Louly»«Morreu Dick Dale, o rei da surf guitar e de "Pulp Fiction"»«Falleció Víctor Genes»«João Carlos Marinho, autor de 'O Gênio do Crime', morre em SP»«Legendary Horror Director and SFX Artist John Carl Buechler Dies at 66»«Morre em Salvador a religiosa Makota Valdina»«مرگ بازیکن‌ سابق نساجی بر اثر سقوط سنگ در مازندران»«Domingos Oliveira morre no Rio»«Morre Airton Ravagniani, ex-São Paulo, Fla, Vasco, Grêmio e Sport - Notícias»«Morre o escritor Flavio Moreira da Costa»«Larry Cohen, Writer-Director of 'It's Alive' and 'Hell Up in Harlem,' Dies at 77»«Scott Walker, experimental singer-songwriter, dead at 76»«Joseph Pilato, Day of the Dead Star and Horror Favorite, Dies at 70»«Sheffield United set to pay tribute to legendary goalkeeper Ted Burgin who has died at 91»«Morre Rafael Henzel, sobrevivente de acidente aéreo da Chapecoense»«Morre Valery Bykovsky, um dos primeiros cosmonautas da União Soviética»«Agnès Varda, cineasta da Nouvelle Vague, morre aos 90 anos»«Agnès Varda, cineasta francesa, morre aos 90 anos»«Tania Mallet, James Bond Actress and Helen Mirren's Cousin, Dies at 77»e