What makes Graph invariants so useful/important?Complete graph invariants?A Combinatorial Abstraction for The “Polynomial Hirsch Conjecture” What graph invariants are fast to compute?What are some useful invariants for distinguishing between random graph models?Graph homomorphisms and line graphCalculating a Combinatorial Generalization of Planar Convex HullsOn the use of Weisfeiler-Leman refinement in Babai's GI proofReconstruction conjecture:Complete graph invariantsChromatic number of the plane and phase transitions of Potts modelsGraph isomorphism by invariants

What makes Graph invariants so useful/important?


Complete graph invariants?A Combinatorial Abstraction for The “Polynomial Hirsch Conjecture” What graph invariants are fast to compute?What are some useful invariants for distinguishing between random graph models?Graph homomorphisms and line graphCalculating a Combinatorial Generalization of Planar Convex HullsOn the use of Weisfeiler-Leman refinement in Babai's GI proofReconstruction conjecture:Complete graph invariantsChromatic number of the plane and phase transitions of Potts modelsGraph isomorphism by invariants













3












$begingroup$


What makes Graph invariants so useful/important? If I were trying to create a useful graph invariant, what principles should I follow?



My understanding is that they allow one to isolate and study specific properties of graphs algebraically or to classify graphs up to isomorphism (although, it seems to me that canonical labellings are the right tool for this).



However, important graph invariants are constructed from counting proper colorings of a graph, for an appropriate definition of proper. A priori, why do we know that those graph invariants isolate and study specific properties or is there some other key motivation for graph invariants?










share|cite|improve this question









New contributor




Ishaan Shah is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$
















    3












    $begingroup$


    What makes Graph invariants so useful/important? If I were trying to create a useful graph invariant, what principles should I follow?



    My understanding is that they allow one to isolate and study specific properties of graphs algebraically or to classify graphs up to isomorphism (although, it seems to me that canonical labellings are the right tool for this).



    However, important graph invariants are constructed from counting proper colorings of a graph, for an appropriate definition of proper. A priori, why do we know that those graph invariants isolate and study specific properties or is there some other key motivation for graph invariants?










    share|cite|improve this question









    New contributor




    Ishaan Shah is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      3












      3








      3





      $begingroup$


      What makes Graph invariants so useful/important? If I were trying to create a useful graph invariant, what principles should I follow?



      My understanding is that they allow one to isolate and study specific properties of graphs algebraically or to classify graphs up to isomorphism (although, it seems to me that canonical labellings are the right tool for this).



      However, important graph invariants are constructed from counting proper colorings of a graph, for an appropriate definition of proper. A priori, why do we know that those graph invariants isolate and study specific properties or is there some other key motivation for graph invariants?










      share|cite|improve this question









      New contributor




      Ishaan Shah is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      What makes Graph invariants so useful/important? If I were trying to create a useful graph invariant, what principles should I follow?



      My understanding is that they allow one to isolate and study specific properties of graphs algebraically or to classify graphs up to isomorphism (although, it seems to me that canonical labellings are the right tool for this).



      However, important graph invariants are constructed from counting proper colorings of a graph, for an appropriate definition of proper. A priori, why do we know that those graph invariants isolate and study specific properties or is there some other key motivation for graph invariants?







      co.combinatorics graph-theory graph-colorings






      share|cite|improve this question









      New contributor




      Ishaan Shah is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question









      New contributor




      Ishaan Shah is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question








      edited 4 hours ago







      Ishaan Shah













      New contributor




      Ishaan Shah is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 6 hours ago









      Ishaan ShahIshaan Shah

      264




      264




      New contributor




      Ishaan Shah is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Ishaan Shah is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Ishaan Shah is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          3 Answers
          3






          active

          oldest

          votes


















          4












          $begingroup$

          We probably wouldn’t ask what makes graph properties useful. In many ways we consider isomorphic graphs as “the same.” Invariants are just properties that respect this sameness. The specific vertex set is not an invariant. The number of vertices is. You can certainly make up unmotivated invariants like “the number of vertices whose degree is a divisor of $65$



          If you want to decide “is graph $G$ isomorphic to graph $H$?” then easily computed invariants like number of vertices might easily tell you no. If they fail then you can try harder. But invariants are useful for more than deciding isomorphism.



          The girth (length of the shortest cycle), chromatic number, clique number all seem pretty useful. A canonical labeling won’t get you very far toward determining what they are.



          As far as how one would create a “good” graph invariant, I think that isn’t the right thing to ask. Instead, start with a question you find interesting and see what invariants it leads to.



          You might start with a question like “when can a graph be drawn in the plane without edge crossings?” Which is itself an attractive invariant. Then you could be drawn to thinking “well, all but one with up to 5 vertices...” and end up with the useful but not obvious idea of graph minors which turn out to be widely useful.



          In some cases we also might want to know if there are or could be graphs which have a certain mix of invariants such as regular of degree $r$ with $n$ vertices. Then the invariant “number of edges” is $fracrn2$ which tells you that $r$ and $n$ can’t both be odd. That is a basic example but there are spectacular results obtained by considering the distinct eigenvalues and multiplicities (a negative or non-integer multiplicity says “no way!”)



          LATER Since you ask, here is an example of my claim that the invariant arises from a question. Map coloring leads to Problem: show that every planar graph enjoys the (invariant) property of having a proper $4$-coloring. This leads the one to define the chromatic function $P(G,c)$ as the number of proper colorings of the given graph $G$ with $c$ colors to show $P(G,4) gt 0$ for planar graphs. Once you start to investigate there is the perhaps unexpected discovery that $P(G,c)=p(c)$ for a polynomial $p=p_G(x).$ By that time the chromatic polynomial seems well motivated and finding that $p(-1)$ counts acyclic orientations just ups the ante. Read Wikipedia for details.



          There are intervals of the real line which can not contain any zeroes of a chromatic polynomial ( for example $(0,1)$ and $(1,frac3227]$ ) and also some intervals which can’t do so for a planar triangulation of a sphere. Alas, no one has shown algebraically that $4$ belongs to such an interval.






          share|cite|improve this answer











          $endgroup$




















            1












            $begingroup$

            Canonical labellings are hard to find and to handle. This is why one neeeds invariants, so that one can have statements like “all graphs having such and such invariants are so and so”.



            This is akin to many other mathematical theories, e.g. a lot can be said about a linear operator from its characteristic polynomial alone.
            By the way, the characteristic polynomial of the adjacency matrix of a graph contains quite a bit of information about the graph, e.g. in some cases one can say things about the diameter of the graph, etc.






            share|cite|improve this answer









            $endgroup$




















              1












              $begingroup$

              Some graph invariants are useful to separate NP-complete problems from tractable problems. Bounded treewidth is such a parameter.
              For example, the weighted max independent set problem is NP-complete but can be
              solved in linear time for graphs of bounded treewidth.
              Similarly, the NP-complete 3-coloring problem can be solved in linear time for graphs of bounded treewidth. The time complexities for these problems
              are $O(2^w n)$ and $O(3^w n)$ respectively, for graphs of tree-width $w$.



              Two classes of graphs with bounded treewidth are the Halin graphs and pseudoforests:




                       


                       

              Images from Wikipedia: Halin graph,
              pseudoforest.





              share|cite|improve this answer









              $endgroup$













                Your Answer





                StackExchange.ifUsing("editor", function ()
                return StackExchange.using("mathjaxEditing", function ()
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                );
                );
                , "mathjax-editing");

                StackExchange.ready(function()
                var channelOptions =
                tags: "".split(" "),
                id: "504"
                ;
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function()
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled)
                StackExchange.using("snippets", function()
                createEditor();
                );

                else
                createEditor();

                );

                function createEditor()
                StackExchange.prepareEditor(
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader:
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                ,
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                );



                );






                Ishaan Shah is a new contributor. Be nice, and check out our Code of Conduct.









                draft saved

                draft discarded


















                StackExchange.ready(
                function ()
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327426%2fwhat-makes-graph-invariants-so-useful-important%23new-answer', 'question_page');

                );

                Post as a guest















                Required, but never shown

























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                4












                $begingroup$

                We probably wouldn’t ask what makes graph properties useful. In many ways we consider isomorphic graphs as “the same.” Invariants are just properties that respect this sameness. The specific vertex set is not an invariant. The number of vertices is. You can certainly make up unmotivated invariants like “the number of vertices whose degree is a divisor of $65$



                If you want to decide “is graph $G$ isomorphic to graph $H$?” then easily computed invariants like number of vertices might easily tell you no. If they fail then you can try harder. But invariants are useful for more than deciding isomorphism.



                The girth (length of the shortest cycle), chromatic number, clique number all seem pretty useful. A canonical labeling won’t get you very far toward determining what they are.



                As far as how one would create a “good” graph invariant, I think that isn’t the right thing to ask. Instead, start with a question you find interesting and see what invariants it leads to.



                You might start with a question like “when can a graph be drawn in the plane without edge crossings?” Which is itself an attractive invariant. Then you could be drawn to thinking “well, all but one with up to 5 vertices...” and end up with the useful but not obvious idea of graph minors which turn out to be widely useful.



                In some cases we also might want to know if there are or could be graphs which have a certain mix of invariants such as regular of degree $r$ with $n$ vertices. Then the invariant “number of edges” is $fracrn2$ which tells you that $r$ and $n$ can’t both be odd. That is a basic example but there are spectacular results obtained by considering the distinct eigenvalues and multiplicities (a negative or non-integer multiplicity says “no way!”)



                LATER Since you ask, here is an example of my claim that the invariant arises from a question. Map coloring leads to Problem: show that every planar graph enjoys the (invariant) property of having a proper $4$-coloring. This leads the one to define the chromatic function $P(G,c)$ as the number of proper colorings of the given graph $G$ with $c$ colors to show $P(G,4) gt 0$ for planar graphs. Once you start to investigate there is the perhaps unexpected discovery that $P(G,c)=p(c)$ for a polynomial $p=p_G(x).$ By that time the chromatic polynomial seems well motivated and finding that $p(-1)$ counts acyclic orientations just ups the ante. Read Wikipedia for details.



                There are intervals of the real line which can not contain any zeroes of a chromatic polynomial ( for example $(0,1)$ and $(1,frac3227]$ ) and also some intervals which can’t do so for a planar triangulation of a sphere. Alas, no one has shown algebraically that $4$ belongs to such an interval.






                share|cite|improve this answer











                $endgroup$

















                  4












                  $begingroup$

                  We probably wouldn’t ask what makes graph properties useful. In many ways we consider isomorphic graphs as “the same.” Invariants are just properties that respect this sameness. The specific vertex set is not an invariant. The number of vertices is. You can certainly make up unmotivated invariants like “the number of vertices whose degree is a divisor of $65$



                  If you want to decide “is graph $G$ isomorphic to graph $H$?” then easily computed invariants like number of vertices might easily tell you no. If they fail then you can try harder. But invariants are useful for more than deciding isomorphism.



                  The girth (length of the shortest cycle), chromatic number, clique number all seem pretty useful. A canonical labeling won’t get you very far toward determining what they are.



                  As far as how one would create a “good” graph invariant, I think that isn’t the right thing to ask. Instead, start with a question you find interesting and see what invariants it leads to.



                  You might start with a question like “when can a graph be drawn in the plane without edge crossings?” Which is itself an attractive invariant. Then you could be drawn to thinking “well, all but one with up to 5 vertices...” and end up with the useful but not obvious idea of graph minors which turn out to be widely useful.



                  In some cases we also might want to know if there are or could be graphs which have a certain mix of invariants such as regular of degree $r$ with $n$ vertices. Then the invariant “number of edges” is $fracrn2$ which tells you that $r$ and $n$ can’t both be odd. That is a basic example but there are spectacular results obtained by considering the distinct eigenvalues and multiplicities (a negative or non-integer multiplicity says “no way!”)



                  LATER Since you ask, here is an example of my claim that the invariant arises from a question. Map coloring leads to Problem: show that every planar graph enjoys the (invariant) property of having a proper $4$-coloring. This leads the one to define the chromatic function $P(G,c)$ as the number of proper colorings of the given graph $G$ with $c$ colors to show $P(G,4) gt 0$ for planar graphs. Once you start to investigate there is the perhaps unexpected discovery that $P(G,c)=p(c)$ for a polynomial $p=p_G(x).$ By that time the chromatic polynomial seems well motivated and finding that $p(-1)$ counts acyclic orientations just ups the ante. Read Wikipedia for details.



                  There are intervals of the real line which can not contain any zeroes of a chromatic polynomial ( for example $(0,1)$ and $(1,frac3227]$ ) and also some intervals which can’t do so for a planar triangulation of a sphere. Alas, no one has shown algebraically that $4$ belongs to such an interval.






                  share|cite|improve this answer











                  $endgroup$















                    4












                    4








                    4





                    $begingroup$

                    We probably wouldn’t ask what makes graph properties useful. In many ways we consider isomorphic graphs as “the same.” Invariants are just properties that respect this sameness. The specific vertex set is not an invariant. The number of vertices is. You can certainly make up unmotivated invariants like “the number of vertices whose degree is a divisor of $65$



                    If you want to decide “is graph $G$ isomorphic to graph $H$?” then easily computed invariants like number of vertices might easily tell you no. If they fail then you can try harder. But invariants are useful for more than deciding isomorphism.



                    The girth (length of the shortest cycle), chromatic number, clique number all seem pretty useful. A canonical labeling won’t get you very far toward determining what they are.



                    As far as how one would create a “good” graph invariant, I think that isn’t the right thing to ask. Instead, start with a question you find interesting and see what invariants it leads to.



                    You might start with a question like “when can a graph be drawn in the plane without edge crossings?” Which is itself an attractive invariant. Then you could be drawn to thinking “well, all but one with up to 5 vertices...” and end up with the useful but not obvious idea of graph minors which turn out to be widely useful.



                    In some cases we also might want to know if there are or could be graphs which have a certain mix of invariants such as regular of degree $r$ with $n$ vertices. Then the invariant “number of edges” is $fracrn2$ which tells you that $r$ and $n$ can’t both be odd. That is a basic example but there are spectacular results obtained by considering the distinct eigenvalues and multiplicities (a negative or non-integer multiplicity says “no way!”)



                    LATER Since you ask, here is an example of my claim that the invariant arises from a question. Map coloring leads to Problem: show that every planar graph enjoys the (invariant) property of having a proper $4$-coloring. This leads the one to define the chromatic function $P(G,c)$ as the number of proper colorings of the given graph $G$ with $c$ colors to show $P(G,4) gt 0$ for planar graphs. Once you start to investigate there is the perhaps unexpected discovery that $P(G,c)=p(c)$ for a polynomial $p=p_G(x).$ By that time the chromatic polynomial seems well motivated and finding that $p(-1)$ counts acyclic orientations just ups the ante. Read Wikipedia for details.



                    There are intervals of the real line which can not contain any zeroes of a chromatic polynomial ( for example $(0,1)$ and $(1,frac3227]$ ) and also some intervals which can’t do so for a planar triangulation of a sphere. Alas, no one has shown algebraically that $4$ belongs to such an interval.






                    share|cite|improve this answer











                    $endgroup$



                    We probably wouldn’t ask what makes graph properties useful. In many ways we consider isomorphic graphs as “the same.” Invariants are just properties that respect this sameness. The specific vertex set is not an invariant. The number of vertices is. You can certainly make up unmotivated invariants like “the number of vertices whose degree is a divisor of $65$



                    If you want to decide “is graph $G$ isomorphic to graph $H$?” then easily computed invariants like number of vertices might easily tell you no. If they fail then you can try harder. But invariants are useful for more than deciding isomorphism.



                    The girth (length of the shortest cycle), chromatic number, clique number all seem pretty useful. A canonical labeling won’t get you very far toward determining what they are.



                    As far as how one would create a “good” graph invariant, I think that isn’t the right thing to ask. Instead, start with a question you find interesting and see what invariants it leads to.



                    You might start with a question like “when can a graph be drawn in the plane without edge crossings?” Which is itself an attractive invariant. Then you could be drawn to thinking “well, all but one with up to 5 vertices...” and end up with the useful but not obvious idea of graph minors which turn out to be widely useful.



                    In some cases we also might want to know if there are or could be graphs which have a certain mix of invariants such as regular of degree $r$ with $n$ vertices. Then the invariant “number of edges” is $fracrn2$ which tells you that $r$ and $n$ can’t both be odd. That is a basic example but there are spectacular results obtained by considering the distinct eigenvalues and multiplicities (a negative or non-integer multiplicity says “no way!”)



                    LATER Since you ask, here is an example of my claim that the invariant arises from a question. Map coloring leads to Problem: show that every planar graph enjoys the (invariant) property of having a proper $4$-coloring. This leads the one to define the chromatic function $P(G,c)$ as the number of proper colorings of the given graph $G$ with $c$ colors to show $P(G,4) gt 0$ for planar graphs. Once you start to investigate there is the perhaps unexpected discovery that $P(G,c)=p(c)$ for a polynomial $p=p_G(x).$ By that time the chromatic polynomial seems well motivated and finding that $p(-1)$ counts acyclic orientations just ups the ante. Read Wikipedia for details.



                    There are intervals of the real line which can not contain any zeroes of a chromatic polynomial ( for example $(0,1)$ and $(1,frac3227]$ ) and also some intervals which can’t do so for a planar triangulation of a sphere. Alas, no one has shown algebraically that $4$ belongs to such an interval.







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited 1 hour ago

























                    answered 3 hours ago









                    Aaron MeyerowitzAaron Meyerowitz

                    24.4k13388




                    24.4k13388





















                        1












                        $begingroup$

                        Canonical labellings are hard to find and to handle. This is why one neeeds invariants, so that one can have statements like “all graphs having such and such invariants are so and so”.



                        This is akin to many other mathematical theories, e.g. a lot can be said about a linear operator from its characteristic polynomial alone.
                        By the way, the characteristic polynomial of the adjacency matrix of a graph contains quite a bit of information about the graph, e.g. in some cases one can say things about the diameter of the graph, etc.






                        share|cite|improve this answer









                        $endgroup$

















                          1












                          $begingroup$

                          Canonical labellings are hard to find and to handle. This is why one neeeds invariants, so that one can have statements like “all graphs having such and such invariants are so and so”.



                          This is akin to many other mathematical theories, e.g. a lot can be said about a linear operator from its characteristic polynomial alone.
                          By the way, the characteristic polynomial of the adjacency matrix of a graph contains quite a bit of information about the graph, e.g. in some cases one can say things about the diameter of the graph, etc.






                          share|cite|improve this answer









                          $endgroup$















                            1












                            1








                            1





                            $begingroup$

                            Canonical labellings are hard to find and to handle. This is why one neeeds invariants, so that one can have statements like “all graphs having such and such invariants are so and so”.



                            This is akin to many other mathematical theories, e.g. a lot can be said about a linear operator from its characteristic polynomial alone.
                            By the way, the characteristic polynomial of the adjacency matrix of a graph contains quite a bit of information about the graph, e.g. in some cases one can say things about the diameter of the graph, etc.






                            share|cite|improve this answer









                            $endgroup$



                            Canonical labellings are hard to find and to handle. This is why one neeeds invariants, so that one can have statements like “all graphs having such and such invariants are so and so”.



                            This is akin to many other mathematical theories, e.g. a lot can be said about a linear operator from its characteristic polynomial alone.
                            By the way, the characteristic polynomial of the adjacency matrix of a graph contains quite a bit of information about the graph, e.g. in some cases one can say things about the diameter of the graph, etc.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 6 hours ago









                            Dima PasechnikDima Pasechnik

                            9,39311952




                            9,39311952





















                                1












                                $begingroup$

                                Some graph invariants are useful to separate NP-complete problems from tractable problems. Bounded treewidth is such a parameter.
                                For example, the weighted max independent set problem is NP-complete but can be
                                solved in linear time for graphs of bounded treewidth.
                                Similarly, the NP-complete 3-coloring problem can be solved in linear time for graphs of bounded treewidth. The time complexities for these problems
                                are $O(2^w n)$ and $O(3^w n)$ respectively, for graphs of tree-width $w$.



                                Two classes of graphs with bounded treewidth are the Halin graphs and pseudoforests:




                                         


                                         

                                Images from Wikipedia: Halin graph,
                                pseudoforest.





                                share|cite|improve this answer









                                $endgroup$

















                                  1












                                  $begingroup$

                                  Some graph invariants are useful to separate NP-complete problems from tractable problems. Bounded treewidth is such a parameter.
                                  For example, the weighted max independent set problem is NP-complete but can be
                                  solved in linear time for graphs of bounded treewidth.
                                  Similarly, the NP-complete 3-coloring problem can be solved in linear time for graphs of bounded treewidth. The time complexities for these problems
                                  are $O(2^w n)$ and $O(3^w n)$ respectively, for graphs of tree-width $w$.



                                  Two classes of graphs with bounded treewidth are the Halin graphs and pseudoforests:




                                           


                                           

                                  Images from Wikipedia: Halin graph,
                                  pseudoforest.





                                  share|cite|improve this answer









                                  $endgroup$















                                    1












                                    1








                                    1





                                    $begingroup$

                                    Some graph invariants are useful to separate NP-complete problems from tractable problems. Bounded treewidth is such a parameter.
                                    For example, the weighted max independent set problem is NP-complete but can be
                                    solved in linear time for graphs of bounded treewidth.
                                    Similarly, the NP-complete 3-coloring problem can be solved in linear time for graphs of bounded treewidth. The time complexities for these problems
                                    are $O(2^w n)$ and $O(3^w n)$ respectively, for graphs of tree-width $w$.



                                    Two classes of graphs with bounded treewidth are the Halin graphs and pseudoforests:




                                             


                                             

                                    Images from Wikipedia: Halin graph,
                                    pseudoforest.





                                    share|cite|improve this answer









                                    $endgroup$



                                    Some graph invariants are useful to separate NP-complete problems from tractable problems. Bounded treewidth is such a parameter.
                                    For example, the weighted max independent set problem is NP-complete but can be
                                    solved in linear time for graphs of bounded treewidth.
                                    Similarly, the NP-complete 3-coloring problem can be solved in linear time for graphs of bounded treewidth. The time complexities for these problems
                                    are $O(2^w n)$ and $O(3^w n)$ respectively, for graphs of tree-width $w$.



                                    Two classes of graphs with bounded treewidth are the Halin graphs and pseudoforests:




                                             


                                             

                                    Images from Wikipedia: Halin graph,
                                    pseudoforest.






                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered 19 mins ago









                                    Joseph O'RourkeJoseph O'Rourke

                                    86.4k16239711




                                    86.4k16239711




















                                        Ishaan Shah is a new contributor. Be nice, and check out our Code of Conduct.









                                        draft saved

                                        draft discarded


















                                        Ishaan Shah is a new contributor. Be nice, and check out our Code of Conduct.












                                        Ishaan Shah is a new contributor. Be nice, and check out our Code of Conduct.











                                        Ishaan Shah is a new contributor. Be nice, and check out our Code of Conduct.














                                        Thanks for contributing an answer to MathOverflow!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid


                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.

                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function ()
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327426%2fwhat-makes-graph-invariants-so-useful-important%23new-answer', 'question_page');

                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Are there any AGPL-style licences that require source code modifications to be public? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Force derivative works to be publicAre there any GPL like licenses for Apple App Store?Do you violate the GPL if you provide source code that cannot be compiled?GPL - is it distribution to use libraries in an appliance loaned to customers?Distributing App for free which uses GPL'ed codeModifications of server software under GPL, with web/CLI interfaceDoes using an AGPLv3-licensed library prevent me from dual-licensing my own source code?Can I publish only select code under GPLv3 from a private project?Is there published precedent regarding the scope of covered work that uses AGPL software?If MIT licensed code links to GPL licensed code what should be the license of the resulting binary program?If I use a public API endpoint that has its source code licensed under AGPL in my app, do I need to disclose my source?

                                        2013 GY136 Descoberta | Órbita | Referências Menu de navegação«List Of Centaurs and Scattered-Disk Objects»«List of Known Trans-Neptunian Objects»

                                        Mortes em março de 2019 Referências Menu de navegação«Zhores Alferov, Nobel de Física bielorrusso, morre aos 88 anos - Ciência»«Fallece Rafael Torija, o bispo emérito de Ciudad Real»«Peter Hurford dies at 88»«Keith Flint, vocalista do The Prodigy, morre aos 49 anos»«Luke Perry, ator de 'Barrados no baile' e 'Riverdale', morre aos 52 anos»«Former Rangers and Scotland captain Eric Caldow dies, aged 84»«Morreu, aos 61 anos, a antiga lenda do wrestling King Kong Bundy»«Fallece el actor y director teatral Abraham Stavans»«In Memoriam Guillaume Faye»«Sidney Sheinberg, a Force Behind Universal and Spielberg, Is Dead at 84»«Carmine Persico, Colombo Crime Family Boss, Is Dead at 85»«Dirigent Michael Gielen gestorben»«Ciclista tricampeã mundial e prata na Rio 2016 é encontrada morta em casa aos 23 anos»«Pagan Community Notes: Raven Grimassi dies, Indianapolis pop-up event cancelled, Circle Sanctuary announces new podcast, and more!»«Hal Blaine, Wrecking Crew Drummer, Dies at 90»«Morre Coutinho, que editou dupla lendária com Pelé no Santos»«Cantor Demétrius, ídolo da Jovem Guarda, morre em SP»«Ex-presidente do Vasco, Eurico Miranda morre no Rio de Janeiro»«Bronze no Mundial de basquete de 1971, Laís Elena morre aos 76 anos»«Diretor de Corridas da F1, Charlie Whiting morre aos 66 anos às vésperas do GP da Austrália»«Morreu o cardeal Danneels, da Bélgica»«Morreu o cartoonista Augusto Cid»«Morreu a atriz Maria Isabel de Lizandra, de "Vale Tudo" e novelas da Tupi»«WS Merwin, prize-winning poet of nature, dies at 91»«Atriz Márcia Real morre em São Paulo aos 88 anos»«Mauritanie: décès de l'ancien président Mohamed Mahmoud ould Louly»«Morreu Dick Dale, o rei da surf guitar e de "Pulp Fiction"»«Falleció Víctor Genes»«João Carlos Marinho, autor de 'O Gênio do Crime', morre em SP»«Legendary Horror Director and SFX Artist John Carl Buechler Dies at 66»«Morre em Salvador a religiosa Makota Valdina»«مرگ بازیکن‌ سابق نساجی بر اثر سقوط سنگ در مازندران»«Domingos Oliveira morre no Rio»«Morre Airton Ravagniani, ex-São Paulo, Fla, Vasco, Grêmio e Sport - Notícias»«Morre o escritor Flavio Moreira da Costa»«Larry Cohen, Writer-Director of 'It's Alive' and 'Hell Up in Harlem,' Dies at 77»«Scott Walker, experimental singer-songwriter, dead at 76»«Joseph Pilato, Day of the Dead Star and Horror Favorite, Dies at 70»«Sheffield United set to pay tribute to legendary goalkeeper Ted Burgin who has died at 91»«Morre Rafael Henzel, sobrevivente de acidente aéreo da Chapecoense»«Morre Valery Bykovsky, um dos primeiros cosmonautas da União Soviética»«Agnès Varda, cineasta da Nouvelle Vague, morre aos 90 anos»«Agnès Varda, cineasta francesa, morre aos 90 anos»«Tania Mallet, James Bond Actress and Helen Mirren's Cousin, Dies at 77»e