Contradiction proof for inequality of P and NP? Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Proof for P-complete is not closed under intersectionProof of sum of powerset?Contradiction between best-case running time of insertion sort and $nlog n$ lower bound?bounded length CoNP proofLogarithmic Randomness is Necessary for PCP TheoremTrouble seeing the contradiction in diagonalization proofIs it always possible to have one part of the reduction?Is this language NP Hard?Testing algorithm for a modified sieve of EratosthenesFinding a complexity by solving inequality

Multiple options vs single option UI

"Rubric" as meaning "signature" or "personal mark" -- is this accepted usage?

Are there moral objections to a life motivated purely by money? How to sway a person from this lifestyle?

Is a 5 watt UHF/VHF handheld considered QRP?

Does Feeblemind produce an ongoing magical effect that can be dispelled?

What is it called when you ride around on your front wheel?

Is accepting an invalid credit card number a security issue?

How would I use different systems of magic when they are capable of the same effects?

Can I criticise the more senior developers around me for not writing clean code?

Do I need to protect SFP ports and optics from dust/contaminants? If so, how?

All ASCII characters with a given bit count

Expansion//Explosion and Siren Stormtamer

"Whatever a Russian does, they end up making the Kalashnikov gun"? Are there any similar proverbs in English?

Why isn't everyone flabbergasted about Bran's "gift"?

Raising a bilingual kid. When should we introduce the majority language?

What ability score does a Hexblade's Pact Weapon use for attack and damage when wielded by another character?

Why did Israel vote against lifting the American embargo on Cuba?

Passing args from the bash script to the function in the script

Is it acceptable to use working hours to read general interest books?

Multiple fireplaces in an apartment building?

c++ diamond problem - How to call base method only once

finding a tangent line to a parabola

Second order approximation of the loss function (Deep learning book, 7.33)

How long after the last departure shall the airport stay open for an emergency return?



Contradiction proof for inequality of P and NP?



Announcing the arrival of Valued Associate #679: Cesar Manara
Unicorn Meta Zoo #1: Why another podcast?Proof for P-complete is not closed under intersectionProof of sum of powerset?Contradiction between best-case running time of insertion sort and $nlog n$ lower bound?bounded length CoNP proofLogarithmic Randomness is Necessary for PCP TheoremTrouble seeing the contradiction in diagonalization proofIs it always possible to have one part of the reduction?Is this language NP Hard?Testing algorithm for a modified sieve of EratosthenesFinding a complexity by solving inequality










1












$begingroup$


I'm trying to argue that N is not equal NP using hierarchy theorems. This is my argument, but when I showed it to our teacher and after deduction, he said that this is problematic where I can't find a compelling reason to accept.




We start off by assuming that $P=NP$. Then it yields that $SAT in P$ which itself then follows that $SAT in TIME(n^k)$. As stands, we are able to do reduce every language in $NP$ to $SAT$. Therefore, $NP subseteq TIME(n^k)$. On the contrary, the time hierarchy theorem states that there should be a language $A in TIME(n^k+1)$, that's not in $TIME(n^k)$. This would lead us to conclude that $A$ is in $P$, while not in $NP$, which is a contradiction to our first assumption. So, we came to the conclusion that $P neq NP$.




Is there something wrong with my proof? I was struggling for hours before asking this, though!










share|cite|improve this question









$endgroup$
















    1












    $begingroup$


    I'm trying to argue that N is not equal NP using hierarchy theorems. This is my argument, but when I showed it to our teacher and after deduction, he said that this is problematic where I can't find a compelling reason to accept.




    We start off by assuming that $P=NP$. Then it yields that $SAT in P$ which itself then follows that $SAT in TIME(n^k)$. As stands, we are able to do reduce every language in $NP$ to $SAT$. Therefore, $NP subseteq TIME(n^k)$. On the contrary, the time hierarchy theorem states that there should be a language $A in TIME(n^k+1)$, that's not in $TIME(n^k)$. This would lead us to conclude that $A$ is in $P$, while not in $NP$, which is a contradiction to our first assumption. So, we came to the conclusion that $P neq NP$.




    Is there something wrong with my proof? I was struggling for hours before asking this, though!










    share|cite|improve this question









    $endgroup$














      1












      1








      1





      $begingroup$


      I'm trying to argue that N is not equal NP using hierarchy theorems. This is my argument, but when I showed it to our teacher and after deduction, he said that this is problematic where I can't find a compelling reason to accept.




      We start off by assuming that $P=NP$. Then it yields that $SAT in P$ which itself then follows that $SAT in TIME(n^k)$. As stands, we are able to do reduce every language in $NP$ to $SAT$. Therefore, $NP subseteq TIME(n^k)$. On the contrary, the time hierarchy theorem states that there should be a language $A in TIME(n^k+1)$, that's not in $TIME(n^k)$. This would lead us to conclude that $A$ is in $P$, while not in $NP$, which is a contradiction to our first assumption. So, we came to the conclusion that $P neq NP$.




      Is there something wrong with my proof? I was struggling for hours before asking this, though!










      share|cite|improve this question









      $endgroup$




      I'm trying to argue that N is not equal NP using hierarchy theorems. This is my argument, but when I showed it to our teacher and after deduction, he said that this is problematic where I can't find a compelling reason to accept.




      We start off by assuming that $P=NP$. Then it yields that $SAT in P$ which itself then follows that $SAT in TIME(n^k)$. As stands, we are able to do reduce every language in $NP$ to $SAT$. Therefore, $NP subseteq TIME(n^k)$. On the contrary, the time hierarchy theorem states that there should be a language $A in TIME(n^k+1)$, that's not in $TIME(n^k)$. This would lead us to conclude that $A$ is in $P$, while not in $NP$, which is a contradiction to our first assumption. So, we came to the conclusion that $P neq NP$.




      Is there something wrong with my proof? I was struggling for hours before asking this, though!







      complexity-theory time-complexity






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 1 hour ago









      inverted_indexinverted_index

      1384




      1384




















          1 Answer
          1






          active

          oldest

          votes


















          4












          $begingroup$


          Then it yields that $SAT in P$ which itself then follows that $SAT in TIME(n^k)$.




          Sure.




          As stands, we are able to do reduce every language in $NP$ to $SAT$. Therefore, $NP subseteq TIME(n^k)$.




          No. Polynomial time reductions aren't free. We can say takes $O(n^r(L))$ time to reduce language $L$ to $SAT$, where $r(L)$ is the exponent in the polynomial time reduction used. This is where your argument falls apart. There is no finite $k$ such that for all $L in NP$ we have $r(L) < k$. At least this does not follow from $P = NP$ and would be a much stronger statement.



          And this stronger statement does indeed conflict with the time hierarchy theorem, which tells us that $P$ can not collapse into $TIME(n^k)$, let alone all of $NP$.






          share|cite|improve this answer











          $endgroup$













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "419"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f108496%2fcontradiction-proof-for-inequality-of-p-and-np%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            4












            $begingroup$


            Then it yields that $SAT in P$ which itself then follows that $SAT in TIME(n^k)$.




            Sure.




            As stands, we are able to do reduce every language in $NP$ to $SAT$. Therefore, $NP subseteq TIME(n^k)$.




            No. Polynomial time reductions aren't free. We can say takes $O(n^r(L))$ time to reduce language $L$ to $SAT$, where $r(L)$ is the exponent in the polynomial time reduction used. This is where your argument falls apart. There is no finite $k$ such that for all $L in NP$ we have $r(L) < k$. At least this does not follow from $P = NP$ and would be a much stronger statement.



            And this stronger statement does indeed conflict with the time hierarchy theorem, which tells us that $P$ can not collapse into $TIME(n^k)$, let alone all of $NP$.






            share|cite|improve this answer











            $endgroup$

















              4












              $begingroup$


              Then it yields that $SAT in P$ which itself then follows that $SAT in TIME(n^k)$.




              Sure.




              As stands, we are able to do reduce every language in $NP$ to $SAT$. Therefore, $NP subseteq TIME(n^k)$.




              No. Polynomial time reductions aren't free. We can say takes $O(n^r(L))$ time to reduce language $L$ to $SAT$, where $r(L)$ is the exponent in the polynomial time reduction used. This is where your argument falls apart. There is no finite $k$ such that for all $L in NP$ we have $r(L) < k$. At least this does not follow from $P = NP$ and would be a much stronger statement.



              And this stronger statement does indeed conflict with the time hierarchy theorem, which tells us that $P$ can not collapse into $TIME(n^k)$, let alone all of $NP$.






              share|cite|improve this answer











              $endgroup$















                4












                4








                4





                $begingroup$


                Then it yields that $SAT in P$ which itself then follows that $SAT in TIME(n^k)$.




                Sure.




                As stands, we are able to do reduce every language in $NP$ to $SAT$. Therefore, $NP subseteq TIME(n^k)$.




                No. Polynomial time reductions aren't free. We can say takes $O(n^r(L))$ time to reduce language $L$ to $SAT$, where $r(L)$ is the exponent in the polynomial time reduction used. This is where your argument falls apart. There is no finite $k$ such that for all $L in NP$ we have $r(L) < k$. At least this does not follow from $P = NP$ and would be a much stronger statement.



                And this stronger statement does indeed conflict with the time hierarchy theorem, which tells us that $P$ can not collapse into $TIME(n^k)$, let alone all of $NP$.






                share|cite|improve this answer











                $endgroup$




                Then it yields that $SAT in P$ which itself then follows that $SAT in TIME(n^k)$.




                Sure.




                As stands, we are able to do reduce every language in $NP$ to $SAT$. Therefore, $NP subseteq TIME(n^k)$.




                No. Polynomial time reductions aren't free. We can say takes $O(n^r(L))$ time to reduce language $L$ to $SAT$, where $r(L)$ is the exponent in the polynomial time reduction used. This is where your argument falls apart. There is no finite $k$ such that for all $L in NP$ we have $r(L) < k$. At least this does not follow from $P = NP$ and would be a much stronger statement.



                And this stronger statement does indeed conflict with the time hierarchy theorem, which tells us that $P$ can not collapse into $TIME(n^k)$, let alone all of $NP$.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited 27 mins ago

























                answered 58 mins ago









                orlporlp

                6,1251826




                6,1251826



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Computer Science Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f108496%2fcontradiction-proof-for-inequality-of-p-and-np%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Are there any AGPL-style licences that require source code modifications to be public? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Force derivative works to be publicAre there any GPL like licenses for Apple App Store?Do you violate the GPL if you provide source code that cannot be compiled?GPL - is it distribution to use libraries in an appliance loaned to customers?Distributing App for free which uses GPL'ed codeModifications of server software under GPL, with web/CLI interfaceDoes using an AGPLv3-licensed library prevent me from dual-licensing my own source code?Can I publish only select code under GPLv3 from a private project?Is there published precedent regarding the scope of covered work that uses AGPL software?If MIT licensed code links to GPL licensed code what should be the license of the resulting binary program?If I use a public API endpoint that has its source code licensed under AGPL in my app, do I need to disclose my source?

                    2013 GY136 Descoberta | Órbita | Referências Menu de navegação«List Of Centaurs and Scattered-Disk Objects»«List of Known Trans-Neptunian Objects»

                    Metrô de Los Teques Índice Linhas | Estações | Ver também | Referências Ligações externas | Menu de navegação«INSTITUCIÓN»«Mapa de rutas»originalMetrô de Los TequesC.A. Metro Los Teques |Alcaldía de Guaicaipuro – Sitio OficialGobernacion de Mirandaeeeeeee