How are such low op-amp input currents possible?Why do some of my IE converter circuits have a large offset voltage?why 2 input bias currents are equal for OpAmp?Flash ADC with TL074 & 74LS148: encoder inputs always high?What is the relation between Op-Amp input current and input impedance?Input impedance of a non-inverting op-ampOP Amp - Finding currentsOp-amps, why do they have such low output currentsWhy such analog comparator input setup?Op-amp input impedance datasheet specificationProtecting a coin cell from high current spikes - using a capacitor or not?

Could a cubesat propel itself to Mars?

Accountant/ lawyer will not return my call

Make a transparent 448*448 image

Why would a jet engine that runs at temps excess of 2000°C burn when it crashes?

How does airport security verify that you can carry a battery bank over 100 Wh?

Solving "Resistance between two nodes on a grid" problem in Mathematica

Subset counting for even numbers

Good allowance savings plan?

Unreachable code, but reachable with exception

Grey hair or white hair

Do f-stop and exposure time perfectly cancel?

Single word request: Harming the benefactor

What wound would be of little consequence to a biped but terrible for a quadruped?

Do I really need to have a scientific explanation for my premise?

How do you like my writing?

Time travel short story where dinosaur doesn't taste like chicken

Why the color red for the Republican Party

Why does Deadpool say "You're welcome, Canada," after shooting Ryan Reynolds in the end credits?

How to create a hard link to an inode (ext4)?

How to pass a string to a command that expects a file?

How do anti-virus programs start at Windows boot?

Do items de-spawn in Diablo?

Does "variables should live in the smallest scope as possible" include the case "variables should not exist if possible"?

BitNot does not flip bits in the way I expected



How are such low op-amp input currents possible?


Why do some of my IE converter circuits have a large offset voltage?why 2 input bias currents are equal for OpAmp?Flash ADC with TL074 & 74LS148: encoder inputs always high?What is the relation between Op-Amp input current and input impedance?Input impedance of a non-inverting op-ampOP Amp - Finding currentsOp-amps, why do they have such low output currentsWhy such analog comparator input setup?Op-amp input impedance datasheet specificationProtecting a coin cell from high current spikes - using a capacitor or not?













4












$begingroup$


I understand that op-amps have low input currents; that's one of their defining characteristics. But looking at the datasheet for the LMC6001 (amusingly called an "Ultra, Ultra-Low Input Current Amplifier" because one ultra just wasn't enough), I have to wonder: how the <censored> do they get such low input currents‽



The LMC6001 claims a maximum input bias current at 25°C of 25 femtoamperes. With its rated input offset voltage of 10mV between the pins, that's equivalent to a 400 GΩ resistor between the inputs, which are two adjacent pins on an SOIC package.



And then if you look at comparators, it's even more impressive. Take for example the TLV7211, where the input impedance is on the order of 100 TΩ, while being in an even smaller SC-70 package. How is this not dominated by leakage currents through the PCB and packaging?










share|improve this question









$endgroup$











  • $begingroup$
    The high input impedance is because they use insulated gate FETs. And of course the leakage across the PCB will tend to dominate, that's why you have to put guard rings around the inputs or stand them off on PTFE insulated posts.
    $endgroup$
    – Jack Creasey
    6 hours ago










  • $begingroup$
    Do they use any special plastic for the packaging of these to reduce leakage across the package itself, or is that not enough of a problem even at this low current level?
    $endgroup$
    – Hearth
    6 hours ago










  • $begingroup$
    For ultra high impedance there may be ground or guard pins ether side of the inputs. For the LMC6001 read 10.1 in the datasheet.
    $endgroup$
    – Jack Creasey
    5 hours ago






  • 1




    $begingroup$
    If you look at Keithley's boards, you'll also see FR4 cutouts to reduce current paths. But to get really low input levels, I had to get the ICs in waffle packs from Hamamatsu and from Burr Brown without the epoxy packaging, and learn to wire bond myself (found someone local willing to help me out.) The epoxy packages are too leaky between pins, as you realized -- certain COTO relays actually leak less. (I couldn't afford guard rings, FR4, or epoxy and also had to stabilize the temperature, too.)
    $endgroup$
    – jonk
    4 hours ago
















4












$begingroup$


I understand that op-amps have low input currents; that's one of their defining characteristics. But looking at the datasheet for the LMC6001 (amusingly called an "Ultra, Ultra-Low Input Current Amplifier" because one ultra just wasn't enough), I have to wonder: how the <censored> do they get such low input currents‽



The LMC6001 claims a maximum input bias current at 25°C of 25 femtoamperes. With its rated input offset voltage of 10mV between the pins, that's equivalent to a 400 GΩ resistor between the inputs, which are two adjacent pins on an SOIC package.



And then if you look at comparators, it's even more impressive. Take for example the TLV7211, where the input impedance is on the order of 100 TΩ, while being in an even smaller SC-70 package. How is this not dominated by leakage currents through the PCB and packaging?










share|improve this question









$endgroup$











  • $begingroup$
    The high input impedance is because they use insulated gate FETs. And of course the leakage across the PCB will tend to dominate, that's why you have to put guard rings around the inputs or stand them off on PTFE insulated posts.
    $endgroup$
    – Jack Creasey
    6 hours ago










  • $begingroup$
    Do they use any special plastic for the packaging of these to reduce leakage across the package itself, or is that not enough of a problem even at this low current level?
    $endgroup$
    – Hearth
    6 hours ago










  • $begingroup$
    For ultra high impedance there may be ground or guard pins ether side of the inputs. For the LMC6001 read 10.1 in the datasheet.
    $endgroup$
    – Jack Creasey
    5 hours ago






  • 1




    $begingroup$
    If you look at Keithley's boards, you'll also see FR4 cutouts to reduce current paths. But to get really low input levels, I had to get the ICs in waffle packs from Hamamatsu and from Burr Brown without the epoxy packaging, and learn to wire bond myself (found someone local willing to help me out.) The epoxy packages are too leaky between pins, as you realized -- certain COTO relays actually leak less. (I couldn't afford guard rings, FR4, or epoxy and also had to stabilize the temperature, too.)
    $endgroup$
    – jonk
    4 hours ago














4












4








4


1



$begingroup$


I understand that op-amps have low input currents; that's one of their defining characteristics. But looking at the datasheet for the LMC6001 (amusingly called an "Ultra, Ultra-Low Input Current Amplifier" because one ultra just wasn't enough), I have to wonder: how the <censored> do they get such low input currents‽



The LMC6001 claims a maximum input bias current at 25°C of 25 femtoamperes. With its rated input offset voltage of 10mV between the pins, that's equivalent to a 400 GΩ resistor between the inputs, which are two adjacent pins on an SOIC package.



And then if you look at comparators, it's even more impressive. Take for example the TLV7211, where the input impedance is on the order of 100 TΩ, while being in an even smaller SC-70 package. How is this not dominated by leakage currents through the PCB and packaging?










share|improve this question









$endgroup$




I understand that op-amps have low input currents; that's one of their defining characteristics. But looking at the datasheet for the LMC6001 (amusingly called an "Ultra, Ultra-Low Input Current Amplifier" because one ultra just wasn't enough), I have to wonder: how the <censored> do they get such low input currents‽



The LMC6001 claims a maximum input bias current at 25°C of 25 femtoamperes. With its rated input offset voltage of 10mV between the pins, that's equivalent to a 400 GΩ resistor between the inputs, which are two adjacent pins on an SOIC package.



And then if you look at comparators, it's even more impressive. Take for example the TLV7211, where the input impedance is on the order of 100 TΩ, while being in an even smaller SC-70 package. How is this not dominated by leakage currents through the PCB and packaging?







operational-amplifier comparator input-impedance leakage-current






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked 6 hours ago









HearthHearth

4,3221036




4,3221036











  • $begingroup$
    The high input impedance is because they use insulated gate FETs. And of course the leakage across the PCB will tend to dominate, that's why you have to put guard rings around the inputs or stand them off on PTFE insulated posts.
    $endgroup$
    – Jack Creasey
    6 hours ago










  • $begingroup$
    Do they use any special plastic for the packaging of these to reduce leakage across the package itself, or is that not enough of a problem even at this low current level?
    $endgroup$
    – Hearth
    6 hours ago










  • $begingroup$
    For ultra high impedance there may be ground or guard pins ether side of the inputs. For the LMC6001 read 10.1 in the datasheet.
    $endgroup$
    – Jack Creasey
    5 hours ago






  • 1




    $begingroup$
    If you look at Keithley's boards, you'll also see FR4 cutouts to reduce current paths. But to get really low input levels, I had to get the ICs in waffle packs from Hamamatsu and from Burr Brown without the epoxy packaging, and learn to wire bond myself (found someone local willing to help me out.) The epoxy packages are too leaky between pins, as you realized -- certain COTO relays actually leak less. (I couldn't afford guard rings, FR4, or epoxy and also had to stabilize the temperature, too.)
    $endgroup$
    – jonk
    4 hours ago

















  • $begingroup$
    The high input impedance is because they use insulated gate FETs. And of course the leakage across the PCB will tend to dominate, that's why you have to put guard rings around the inputs or stand them off on PTFE insulated posts.
    $endgroup$
    – Jack Creasey
    6 hours ago










  • $begingroup$
    Do they use any special plastic for the packaging of these to reduce leakage across the package itself, or is that not enough of a problem even at this low current level?
    $endgroup$
    – Hearth
    6 hours ago










  • $begingroup$
    For ultra high impedance there may be ground or guard pins ether side of the inputs. For the LMC6001 read 10.1 in the datasheet.
    $endgroup$
    – Jack Creasey
    5 hours ago






  • 1




    $begingroup$
    If you look at Keithley's boards, you'll also see FR4 cutouts to reduce current paths. But to get really low input levels, I had to get the ICs in waffle packs from Hamamatsu and from Burr Brown without the epoxy packaging, and learn to wire bond myself (found someone local willing to help me out.) The epoxy packages are too leaky between pins, as you realized -- certain COTO relays actually leak less. (I couldn't afford guard rings, FR4, or epoxy and also had to stabilize the temperature, too.)
    $endgroup$
    – jonk
    4 hours ago
















$begingroup$
The high input impedance is because they use insulated gate FETs. And of course the leakage across the PCB will tend to dominate, that's why you have to put guard rings around the inputs or stand them off on PTFE insulated posts.
$endgroup$
– Jack Creasey
6 hours ago




$begingroup$
The high input impedance is because they use insulated gate FETs. And of course the leakage across the PCB will tend to dominate, that's why you have to put guard rings around the inputs or stand them off on PTFE insulated posts.
$endgroup$
– Jack Creasey
6 hours ago












$begingroup$
Do they use any special plastic for the packaging of these to reduce leakage across the package itself, or is that not enough of a problem even at this low current level?
$endgroup$
– Hearth
6 hours ago




$begingroup$
Do they use any special plastic for the packaging of these to reduce leakage across the package itself, or is that not enough of a problem even at this low current level?
$endgroup$
– Hearth
6 hours ago












$begingroup$
For ultra high impedance there may be ground or guard pins ether side of the inputs. For the LMC6001 read 10.1 in the datasheet.
$endgroup$
– Jack Creasey
5 hours ago




$begingroup$
For ultra high impedance there may be ground or guard pins ether side of the inputs. For the LMC6001 read 10.1 in the datasheet.
$endgroup$
– Jack Creasey
5 hours ago




1




1




$begingroup$
If you look at Keithley's boards, you'll also see FR4 cutouts to reduce current paths. But to get really low input levels, I had to get the ICs in waffle packs from Hamamatsu and from Burr Brown without the epoxy packaging, and learn to wire bond myself (found someone local willing to help me out.) The epoxy packages are too leaky between pins, as you realized -- certain COTO relays actually leak less. (I couldn't afford guard rings, FR4, or epoxy and also had to stabilize the temperature, too.)
$endgroup$
– jonk
4 hours ago





$begingroup$
If you look at Keithley's boards, you'll also see FR4 cutouts to reduce current paths. But to get really low input levels, I had to get the ICs in waffle packs from Hamamatsu and from Burr Brown without the epoxy packaging, and learn to wire bond myself (found someone local willing to help me out.) The epoxy packages are too leaky between pins, as you realized -- certain COTO relays actually leak less. (I couldn't afford guard rings, FR4, or epoxy and also had to stabilize the temperature, too.)
$endgroup$
– jonk
4 hours ago











2 Answers
2






active

oldest

votes


















6












$begingroup$

The input impedance can't be compared directly with the leakage current.



Input impedance is the change in input current with voltage. An input could have a 1uA bias current and 1G$Omega$ input resistance if the 1uA was very stable with input voltage.



They're MOSFETs and almost zero gate leakage is completely normal. Remember that you can store charge for 100 years in nonvolatile memory just with a bit of charge on a tiny gate capacitance. The more impressive achievement is providing any kind of gate protection within that leakage requirement. I suspect they may have some clever bootstrap circuit to minimize leakage. You can search for patents to see if they've disclosed anything relevant (it would be a National Semiconductor patent).



There are options to using FR4 PCBs, which are not perfect even when perfectly clean (and are easily contaminated by some fluxes to have relatively massive leakage). Here is a document which discusses some of the issues. I think Bob Pease also had some good tips and tricks for achieving low leakage. You can avoid a PCB entirely for the low leakage pin and use a PTFE (teflon) standoff, for example.






share|improve this answer









$endgroup$








  • 1




    $begingroup$
    You're right about input impedance. I got some words mixed up, apparently; I'll edit the question to fix that when I'm more confident I can think straight.
    $endgroup$
    – Hearth
    5 hours ago


















2












$begingroup$

They get such low input currents by proper use of CMOS transistors. There is a compromise in speed. You will not find GHZ CMOS op-amps.



The PCB layout MUST include 2 options in design. Guard rails between the input pins prevent leakage currents from nearby supply rails from causing offsets and noise in the outputs. Option 2 means using Teflon in that part of the board, along with routing out narrow strips of board. The input pin, which may have a 100 megohm resistor at its input(s), now has no contact with adjacent PCB traces at all. Some Teflon post are used with a tinned wire in the center, for inputs in the 100M to gigaohm range.



Meters that measure picoamps and picovolts make use of such circuit topology, with Teflon being used for the most demanding requirements. A separate dust shield and conformal coating prevent dust and moisture from causing noise and/or offset errors.






share|improve this answer











$endgroup$












    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("schematics", function ()
    StackExchange.schematics.init();
    );
    , "cicuitlab");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "135"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f426989%2fhow-are-such-low-op-amp-input-currents-possible%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    6












    $begingroup$

    The input impedance can't be compared directly with the leakage current.



    Input impedance is the change in input current with voltage. An input could have a 1uA bias current and 1G$Omega$ input resistance if the 1uA was very stable with input voltage.



    They're MOSFETs and almost zero gate leakage is completely normal. Remember that you can store charge for 100 years in nonvolatile memory just with a bit of charge on a tiny gate capacitance. The more impressive achievement is providing any kind of gate protection within that leakage requirement. I suspect they may have some clever bootstrap circuit to minimize leakage. You can search for patents to see if they've disclosed anything relevant (it would be a National Semiconductor patent).



    There are options to using FR4 PCBs, which are not perfect even when perfectly clean (and are easily contaminated by some fluxes to have relatively massive leakage). Here is a document which discusses some of the issues. I think Bob Pease also had some good tips and tricks for achieving low leakage. You can avoid a PCB entirely for the low leakage pin and use a PTFE (teflon) standoff, for example.






    share|improve this answer









    $endgroup$








    • 1




      $begingroup$
      You're right about input impedance. I got some words mixed up, apparently; I'll edit the question to fix that when I'm more confident I can think straight.
      $endgroup$
      – Hearth
      5 hours ago















    6












    $begingroup$

    The input impedance can't be compared directly with the leakage current.



    Input impedance is the change in input current with voltage. An input could have a 1uA bias current and 1G$Omega$ input resistance if the 1uA was very stable with input voltage.



    They're MOSFETs and almost zero gate leakage is completely normal. Remember that you can store charge for 100 years in nonvolatile memory just with a bit of charge on a tiny gate capacitance. The more impressive achievement is providing any kind of gate protection within that leakage requirement. I suspect they may have some clever bootstrap circuit to minimize leakage. You can search for patents to see if they've disclosed anything relevant (it would be a National Semiconductor patent).



    There are options to using FR4 PCBs, which are not perfect even when perfectly clean (and are easily contaminated by some fluxes to have relatively massive leakage). Here is a document which discusses some of the issues. I think Bob Pease also had some good tips and tricks for achieving low leakage. You can avoid a PCB entirely for the low leakage pin and use a PTFE (teflon) standoff, for example.






    share|improve this answer









    $endgroup$








    • 1




      $begingroup$
      You're right about input impedance. I got some words mixed up, apparently; I'll edit the question to fix that when I'm more confident I can think straight.
      $endgroup$
      – Hearth
      5 hours ago













    6












    6








    6





    $begingroup$

    The input impedance can't be compared directly with the leakage current.



    Input impedance is the change in input current with voltage. An input could have a 1uA bias current and 1G$Omega$ input resistance if the 1uA was very stable with input voltage.



    They're MOSFETs and almost zero gate leakage is completely normal. Remember that you can store charge for 100 years in nonvolatile memory just with a bit of charge on a tiny gate capacitance. The more impressive achievement is providing any kind of gate protection within that leakage requirement. I suspect they may have some clever bootstrap circuit to minimize leakage. You can search for patents to see if they've disclosed anything relevant (it would be a National Semiconductor patent).



    There are options to using FR4 PCBs, which are not perfect even when perfectly clean (and are easily contaminated by some fluxes to have relatively massive leakage). Here is a document which discusses some of the issues. I think Bob Pease also had some good tips and tricks for achieving low leakage. You can avoid a PCB entirely for the low leakage pin and use a PTFE (teflon) standoff, for example.






    share|improve this answer









    $endgroup$



    The input impedance can't be compared directly with the leakage current.



    Input impedance is the change in input current with voltage. An input could have a 1uA bias current and 1G$Omega$ input resistance if the 1uA was very stable with input voltage.



    They're MOSFETs and almost zero gate leakage is completely normal. Remember that you can store charge for 100 years in nonvolatile memory just with a bit of charge on a tiny gate capacitance. The more impressive achievement is providing any kind of gate protection within that leakage requirement. I suspect they may have some clever bootstrap circuit to minimize leakage. You can search for patents to see if they've disclosed anything relevant (it would be a National Semiconductor patent).



    There are options to using FR4 PCBs, which are not perfect even when perfectly clean (and are easily contaminated by some fluxes to have relatively massive leakage). Here is a document which discusses some of the issues. I think Bob Pease also had some good tips and tricks for achieving low leakage. You can avoid a PCB entirely for the low leakage pin and use a PTFE (teflon) standoff, for example.







    share|improve this answer












    share|improve this answer



    share|improve this answer










    answered 6 hours ago









    Spehro PefhanySpehro Pefhany

    210k5160422




    210k5160422







    • 1




      $begingroup$
      You're right about input impedance. I got some words mixed up, apparently; I'll edit the question to fix that when I'm more confident I can think straight.
      $endgroup$
      – Hearth
      5 hours ago












    • 1




      $begingroup$
      You're right about input impedance. I got some words mixed up, apparently; I'll edit the question to fix that when I'm more confident I can think straight.
      $endgroup$
      – Hearth
      5 hours ago







    1




    1




    $begingroup$
    You're right about input impedance. I got some words mixed up, apparently; I'll edit the question to fix that when I'm more confident I can think straight.
    $endgroup$
    – Hearth
    5 hours ago




    $begingroup$
    You're right about input impedance. I got some words mixed up, apparently; I'll edit the question to fix that when I'm more confident I can think straight.
    $endgroup$
    – Hearth
    5 hours ago













    2












    $begingroup$

    They get such low input currents by proper use of CMOS transistors. There is a compromise in speed. You will not find GHZ CMOS op-amps.



    The PCB layout MUST include 2 options in design. Guard rails between the input pins prevent leakage currents from nearby supply rails from causing offsets and noise in the outputs. Option 2 means using Teflon in that part of the board, along with routing out narrow strips of board. The input pin, which may have a 100 megohm resistor at its input(s), now has no contact with adjacent PCB traces at all. Some Teflon post are used with a tinned wire in the center, for inputs in the 100M to gigaohm range.



    Meters that measure picoamps and picovolts make use of such circuit topology, with Teflon being used for the most demanding requirements. A separate dust shield and conformal coating prevent dust and moisture from causing noise and/or offset errors.






    share|improve this answer











    $endgroup$

















      2












      $begingroup$

      They get such low input currents by proper use of CMOS transistors. There is a compromise in speed. You will not find GHZ CMOS op-amps.



      The PCB layout MUST include 2 options in design. Guard rails between the input pins prevent leakage currents from nearby supply rails from causing offsets and noise in the outputs. Option 2 means using Teflon in that part of the board, along with routing out narrow strips of board. The input pin, which may have a 100 megohm resistor at its input(s), now has no contact with adjacent PCB traces at all. Some Teflon post are used with a tinned wire in the center, for inputs in the 100M to gigaohm range.



      Meters that measure picoamps and picovolts make use of such circuit topology, with Teflon being used for the most demanding requirements. A separate dust shield and conformal coating prevent dust and moisture from causing noise and/or offset errors.






      share|improve this answer











      $endgroup$















        2












        2








        2





        $begingroup$

        They get such low input currents by proper use of CMOS transistors. There is a compromise in speed. You will not find GHZ CMOS op-amps.



        The PCB layout MUST include 2 options in design. Guard rails between the input pins prevent leakage currents from nearby supply rails from causing offsets and noise in the outputs. Option 2 means using Teflon in that part of the board, along with routing out narrow strips of board. The input pin, which may have a 100 megohm resistor at its input(s), now has no contact with adjacent PCB traces at all. Some Teflon post are used with a tinned wire in the center, for inputs in the 100M to gigaohm range.



        Meters that measure picoamps and picovolts make use of such circuit topology, with Teflon being used for the most demanding requirements. A separate dust shield and conformal coating prevent dust and moisture from causing noise and/or offset errors.






        share|improve this answer











        $endgroup$



        They get such low input currents by proper use of CMOS transistors. There is a compromise in speed. You will not find GHZ CMOS op-amps.



        The PCB layout MUST include 2 options in design. Guard rails between the input pins prevent leakage currents from nearby supply rails from causing offsets and noise in the outputs. Option 2 means using Teflon in that part of the board, along with routing out narrow strips of board. The input pin, which may have a 100 megohm resistor at its input(s), now has no contact with adjacent PCB traces at all. Some Teflon post are used with a tinned wire in the center, for inputs in the 100M to gigaohm range.



        Meters that measure picoamps and picovolts make use of such circuit topology, with Teflon being used for the most demanding requirements. A separate dust shield and conformal coating prevent dust and moisture from causing noise and/or offset errors.







        share|improve this answer














        share|improve this answer



        share|improve this answer








        edited 5 hours ago

























        answered 5 hours ago









        Sparky256Sparky256

        12.1k21637




        12.1k21637



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Electrical Engineering Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f426989%2fhow-are-such-low-op-amp-input-currents-possible%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Are there any AGPL-style licences that require source code modifications to be public? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Force derivative works to be publicAre there any GPL like licenses for Apple App Store?Do you violate the GPL if you provide source code that cannot be compiled?GPL - is it distribution to use libraries in an appliance loaned to customers?Distributing App for free which uses GPL'ed codeModifications of server software under GPL, with web/CLI interfaceDoes using an AGPLv3-licensed library prevent me from dual-licensing my own source code?Can I publish only select code under GPLv3 from a private project?Is there published precedent regarding the scope of covered work that uses AGPL software?If MIT licensed code links to GPL licensed code what should be the license of the resulting binary program?If I use a public API endpoint that has its source code licensed under AGPL in my app, do I need to disclose my source?

            2013 GY136 Descoberta | Órbita | Referências Menu de navegação«List Of Centaurs and Scattered-Disk Objects»«List of Known Trans-Neptunian Objects»

            Metrô de Los Teques Índice Linhas | Estações | Ver também | Referências Ligações externas | Menu de navegação«INSTITUCIÓN»«Mapa de rutas»originalMetrô de Los TequesC.A. Metro Los Teques |Alcaldía de Guaicaipuro – Sitio OficialGobernacion de Mirandaeeeeeee