How do I know where to place holes on an instrument?What factors to consider when inventing a new (lab) instrument?Tutorials or advice on layering synthsWhy do people place amps on top of things?How to connect a line signal to a guitar amp?Note Accentuation (Dynamic) - When should/shouldn't you apply accentuation?Reed of the Duduk —how to get a sound?A seriously difficult question about mistakes and intepretation of musicMy guitar instrument produced a perfect sine wave?How do uncovered tone holes in middle of a flute work?Is there some means of expanding the range of a capped reed instrument?
How much of data wrangling is a data scientist's job?
Would Slavery Reparations be considered Bills of Attainder and hence Illegal?
Do scales need to be in alphabetical order?
What historical events would have to change in order to make 19th century "steampunk" technology possible?
Why is this clock signal connected to a capacitor to gnd?
How does a predictive coding aid in lossless compression?
Examples of smooth manifolds admitting inbetween one and a continuum of complex structures
How would I stat a creature to be immune to everything but the Magic Missile spell? (just for fun)
Could the museum Saturn V's be refitted for one more flight?
What method can I use to design a dungeon difficult enough that the PCs can't make it through without killing them?
How can saying a song's name be a copyright violation?
How dangerous is XSS?
Why is consensus so controversial in Britain?
Unlock My Phone! February 2018
What are some good books on Machine Learning and AI like Krugman, Wells and Graddy's "Essentials of Economics"
What mechanic is there to disable a threat instead of killing it?
What killed these X2 caps?
Why is it a bad idea to hire a hitman to eliminate most corrupt politicians?
Avoiding direct proof while writing proof by induction
What does the expression "A Mann!" means
Is "remove commented out code" correct English?
How do I know where to place holes on an instrument?
How do I deal with an unproductive colleague in a small company?
How could indestructible materials be used in power generation?
How do I know where to place holes on an instrument?
What factors to consider when inventing a new (lab) instrument?Tutorials or advice on layering synthsWhy do people place amps on top of things?How to connect a line signal to a guitar amp?Note Accentuation (Dynamic) - When should/shouldn't you apply accentuation?Reed of the Duduk —how to get a sound?A seriously difficult question about mistakes and intepretation of musicMy guitar instrument produced a perfect sine wave?How do uncovered tone holes in middle of a flute work?Is there some means of expanding the range of a capped reed instrument?
I've been trying to build a double reeded instrument out of plastic straws. I've run into a problem though, when I place fingering holes, the instrument doesn't seem to follow the $$f=/fracnv4L$$ formula. Is there a formula that would allow me to calculate where along the instrument I should place the holes?
acoustics construction reeds
add a comment |
I've been trying to build a double reeded instrument out of plastic straws. I've run into a problem though, when I place fingering holes, the instrument doesn't seem to follow the $$f=/fracnv4L$$ formula. Is there a formula that would allow me to calculate where along the instrument I should place the holes?
acoustics construction reeds
I guess the answer is guess! :D It may also be trial and error.
– Xilpex
5 hours ago
add a comment |
I've been trying to build a double reeded instrument out of plastic straws. I've run into a problem though, when I place fingering holes, the instrument doesn't seem to follow the $$f=/fracnv4L$$ formula. Is there a formula that would allow me to calculate where along the instrument I should place the holes?
acoustics construction reeds
I've been trying to build a double reeded instrument out of plastic straws. I've run into a problem though, when I place fingering holes, the instrument doesn't seem to follow the $$f=/fracnv4L$$ formula. Is there a formula that would allow me to calculate where along the instrument I should place the holes?
acoustics construction reeds
acoustics construction reeds
asked 5 hours ago
tox123tox123
1187
1187
I guess the answer is guess! :D It may also be trial and error.
– Xilpex
5 hours ago
add a comment |
I guess the answer is guess! :D It may also be trial and error.
– Xilpex
5 hours ago
I guess the answer is guess! :D It may also be trial and error.
– Xilpex
5 hours ago
I guess the answer is guess! :D It may also be trial and error.
– Xilpex
5 hours ago
add a comment |
2 Answers
2
active
oldest
votes
The main problem is that it's an oversimplified assumption to consider an open hole as a perfect open boundary condition for the air column. In fact such a hole still has a significant impedance. On the other side, the mouthpiece is not a perfect closed (reeds) or open (flutes) boundary condition, and also a closed hole still affects the column somewhat. A pitch formula would need to take all those factors into account, which depend on hole size and bore. Doing this accurately would require a big CFD model.
In practice, probably almost every wind instrument maker has instead used empirical models, i.e. basically trial and error. It should certainly be possible to fit a formula to that which is more accurate than the overidealisation but still reasonably accurate, but whether one is available publicly I don't know.
add a comment |
In a perfect world, the fundamental pitch of a pipe is determined by f = v/2L, where v is the speed of sound and L is the length of the pipe.
But we don't live in a perfect world.
Placing a hole in the pipe shortens its length, but the new length - the effective length - isn't the distance to the hole, because that isn't the end of the pipe. The larger the hole, the more it will behave like the ideal. The smaller the hole, the longer the effective length will be.
Because the hole size is a variable, you're not going to find a formula that's going to fit every situation. That's because the hole size is a variable in relation to the diameter of the tube: a 1cm hole in a 10cm tube will have a different effective length than a 1cm hole in a 9cm tube.
Since no formula is going to work for all situations, you have do some trial and error. If the pitch is flat, you can enlarge the hole to shorten the effective length. If the pitch is sharp, you'll have to figure out a way to make that hole smaller (or make the whole tube longer - there's a reason woodwinds have multiple pieces!)
There are other variables, too... conical bores behave differently than cylindrical ones. But I'm assuming you're using a cylindrical tube.
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "240"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmusic.stackexchange.com%2fquestions%2f82335%2fhow-do-i-know-where-to-place-holes-on-an-instrument%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
The main problem is that it's an oversimplified assumption to consider an open hole as a perfect open boundary condition for the air column. In fact such a hole still has a significant impedance. On the other side, the mouthpiece is not a perfect closed (reeds) or open (flutes) boundary condition, and also a closed hole still affects the column somewhat. A pitch formula would need to take all those factors into account, which depend on hole size and bore. Doing this accurately would require a big CFD model.
In practice, probably almost every wind instrument maker has instead used empirical models, i.e. basically trial and error. It should certainly be possible to fit a formula to that which is more accurate than the overidealisation but still reasonably accurate, but whether one is available publicly I don't know.
add a comment |
The main problem is that it's an oversimplified assumption to consider an open hole as a perfect open boundary condition for the air column. In fact such a hole still has a significant impedance. On the other side, the mouthpiece is not a perfect closed (reeds) or open (flutes) boundary condition, and also a closed hole still affects the column somewhat. A pitch formula would need to take all those factors into account, which depend on hole size and bore. Doing this accurately would require a big CFD model.
In practice, probably almost every wind instrument maker has instead used empirical models, i.e. basically trial and error. It should certainly be possible to fit a formula to that which is more accurate than the overidealisation but still reasonably accurate, but whether one is available publicly I don't know.
add a comment |
The main problem is that it's an oversimplified assumption to consider an open hole as a perfect open boundary condition for the air column. In fact such a hole still has a significant impedance. On the other side, the mouthpiece is not a perfect closed (reeds) or open (flutes) boundary condition, and also a closed hole still affects the column somewhat. A pitch formula would need to take all those factors into account, which depend on hole size and bore. Doing this accurately would require a big CFD model.
In practice, probably almost every wind instrument maker has instead used empirical models, i.e. basically trial and error. It should certainly be possible to fit a formula to that which is more accurate than the overidealisation but still reasonably accurate, but whether one is available publicly I don't know.
The main problem is that it's an oversimplified assumption to consider an open hole as a perfect open boundary condition for the air column. In fact such a hole still has a significant impedance. On the other side, the mouthpiece is not a perfect closed (reeds) or open (flutes) boundary condition, and also a closed hole still affects the column somewhat. A pitch formula would need to take all those factors into account, which depend on hole size and bore. Doing this accurately would require a big CFD model.
In practice, probably almost every wind instrument maker has instead used empirical models, i.e. basically trial and error. It should certainly be possible to fit a formula to that which is more accurate than the overidealisation but still reasonably accurate, but whether one is available publicly I don't know.
answered 3 hours ago
leftaroundaboutleftaroundabout
20.7k3690
20.7k3690
add a comment |
add a comment |
In a perfect world, the fundamental pitch of a pipe is determined by f = v/2L, where v is the speed of sound and L is the length of the pipe.
But we don't live in a perfect world.
Placing a hole in the pipe shortens its length, but the new length - the effective length - isn't the distance to the hole, because that isn't the end of the pipe. The larger the hole, the more it will behave like the ideal. The smaller the hole, the longer the effective length will be.
Because the hole size is a variable, you're not going to find a formula that's going to fit every situation. That's because the hole size is a variable in relation to the diameter of the tube: a 1cm hole in a 10cm tube will have a different effective length than a 1cm hole in a 9cm tube.
Since no formula is going to work for all situations, you have do some trial and error. If the pitch is flat, you can enlarge the hole to shorten the effective length. If the pitch is sharp, you'll have to figure out a way to make that hole smaller (or make the whole tube longer - there's a reason woodwinds have multiple pieces!)
There are other variables, too... conical bores behave differently than cylindrical ones. But I'm assuming you're using a cylindrical tube.
add a comment |
In a perfect world, the fundamental pitch of a pipe is determined by f = v/2L, where v is the speed of sound and L is the length of the pipe.
But we don't live in a perfect world.
Placing a hole in the pipe shortens its length, but the new length - the effective length - isn't the distance to the hole, because that isn't the end of the pipe. The larger the hole, the more it will behave like the ideal. The smaller the hole, the longer the effective length will be.
Because the hole size is a variable, you're not going to find a formula that's going to fit every situation. That's because the hole size is a variable in relation to the diameter of the tube: a 1cm hole in a 10cm tube will have a different effective length than a 1cm hole in a 9cm tube.
Since no formula is going to work for all situations, you have do some trial and error. If the pitch is flat, you can enlarge the hole to shorten the effective length. If the pitch is sharp, you'll have to figure out a way to make that hole smaller (or make the whole tube longer - there's a reason woodwinds have multiple pieces!)
There are other variables, too... conical bores behave differently than cylindrical ones. But I'm assuming you're using a cylindrical tube.
add a comment |
In a perfect world, the fundamental pitch of a pipe is determined by f = v/2L, where v is the speed of sound and L is the length of the pipe.
But we don't live in a perfect world.
Placing a hole in the pipe shortens its length, but the new length - the effective length - isn't the distance to the hole, because that isn't the end of the pipe. The larger the hole, the more it will behave like the ideal. The smaller the hole, the longer the effective length will be.
Because the hole size is a variable, you're not going to find a formula that's going to fit every situation. That's because the hole size is a variable in relation to the diameter of the tube: a 1cm hole in a 10cm tube will have a different effective length than a 1cm hole in a 9cm tube.
Since no formula is going to work for all situations, you have do some trial and error. If the pitch is flat, you can enlarge the hole to shorten the effective length. If the pitch is sharp, you'll have to figure out a way to make that hole smaller (or make the whole tube longer - there's a reason woodwinds have multiple pieces!)
There are other variables, too... conical bores behave differently than cylindrical ones. But I'm assuming you're using a cylindrical tube.
In a perfect world, the fundamental pitch of a pipe is determined by f = v/2L, where v is the speed of sound and L is the length of the pipe.
But we don't live in a perfect world.
Placing a hole in the pipe shortens its length, but the new length - the effective length - isn't the distance to the hole, because that isn't the end of the pipe. The larger the hole, the more it will behave like the ideal. The smaller the hole, the longer the effective length will be.
Because the hole size is a variable, you're not going to find a formula that's going to fit every situation. That's because the hole size is a variable in relation to the diameter of the tube: a 1cm hole in a 10cm tube will have a different effective length than a 1cm hole in a 9cm tube.
Since no formula is going to work for all situations, you have do some trial and error. If the pitch is flat, you can enlarge the hole to shorten the effective length. If the pitch is sharp, you'll have to figure out a way to make that hole smaller (or make the whole tube longer - there's a reason woodwinds have multiple pieces!)
There are other variables, too... conical bores behave differently than cylindrical ones. But I'm assuming you're using a cylindrical tube.
answered 1 hour ago
Tom SerbTom Serb
1,132110
1,132110
add a comment |
add a comment |
Thanks for contributing an answer to Music: Practice & Theory Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmusic.stackexchange.com%2fquestions%2f82335%2fhow-do-i-know-where-to-place-holes-on-an-instrument%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
I guess the answer is guess! :D It may also be trial and error.
– Xilpex
5 hours ago