How do I know where to place holes on an instrument?What factors to consider when inventing a new (lab) instrument?Tutorials or advice on layering synthsWhy do people place amps on top of things?How to connect a line signal to a guitar amp?Note Accentuation (Dynamic) - When should/shouldn't you apply accentuation?Reed of the Duduk —how to get a sound?A seriously difficult question about mistakes and intepretation of musicMy guitar instrument produced a perfect sine wave?How do uncovered tone holes in middle of a flute work?Is there some means of expanding the range of a capped reed instrument?

How much of data wrangling is a data scientist's job?

Would Slavery Reparations be considered Bills of Attainder and hence Illegal?

Do scales need to be in alphabetical order?

What historical events would have to change in order to make 19th century "steampunk" technology possible?

Why is this clock signal connected to a capacitor to gnd?

How does a predictive coding aid in lossless compression?

Examples of smooth manifolds admitting inbetween one and a continuum of complex structures

How would I stat a creature to be immune to everything but the Magic Missile spell? (just for fun)

Could the museum Saturn V's be refitted for one more flight?

What method can I use to design a dungeon difficult enough that the PCs can't make it through without killing them?

How can saying a song's name be a copyright violation?

How dangerous is XSS?

Why is consensus so controversial in Britain?

Unlock My Phone! February 2018

What are some good books on Machine Learning and AI like Krugman, Wells and Graddy's "Essentials of Economics"

What mechanic is there to disable a threat instead of killing it?

What killed these X2 caps?

Why is it a bad idea to hire a hitman to eliminate most corrupt politicians?

Avoiding direct proof while writing proof by induction

What does the expression "A Mann!" means

Is "remove commented out code" correct English?

How do I know where to place holes on an instrument?

How do I deal with an unproductive colleague in a small company?

How could indestructible materials be used in power generation?



How do I know where to place holes on an instrument?


What factors to consider when inventing a new (lab) instrument?Tutorials or advice on layering synthsWhy do people place amps on top of things?How to connect a line signal to a guitar amp?Note Accentuation (Dynamic) - When should/shouldn't you apply accentuation?Reed of the Duduk —how to get a sound?A seriously difficult question about mistakes and intepretation of musicMy guitar instrument produced a perfect sine wave?How do uncovered tone holes in middle of a flute work?Is there some means of expanding the range of a capped reed instrument?













4















I've been trying to build a double reeded instrument out of plastic straws. I've run into a problem though, when I place fingering holes, the instrument doesn't seem to follow the $$f=/fracnv4L$$ formula. Is there a formula that would allow me to calculate where along the instrument I should place the holes?










share|improve this question






















  • I guess the answer is guess! :D It may also be trial and error.

    – Xilpex
    5 hours ago















4















I've been trying to build a double reeded instrument out of plastic straws. I've run into a problem though, when I place fingering holes, the instrument doesn't seem to follow the $$f=/fracnv4L$$ formula. Is there a formula that would allow me to calculate where along the instrument I should place the holes?










share|improve this question






















  • I guess the answer is guess! :D It may also be trial and error.

    – Xilpex
    5 hours ago













4












4








4








I've been trying to build a double reeded instrument out of plastic straws. I've run into a problem though, when I place fingering holes, the instrument doesn't seem to follow the $$f=/fracnv4L$$ formula. Is there a formula that would allow me to calculate where along the instrument I should place the holes?










share|improve this question














I've been trying to build a double reeded instrument out of plastic straws. I've run into a problem though, when I place fingering holes, the instrument doesn't seem to follow the $$f=/fracnv4L$$ formula. Is there a formula that would allow me to calculate where along the instrument I should place the holes?







acoustics construction reeds






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked 5 hours ago









tox123tox123

1187




1187












  • I guess the answer is guess! :D It may also be trial and error.

    – Xilpex
    5 hours ago

















  • I guess the answer is guess! :D It may also be trial and error.

    – Xilpex
    5 hours ago
















I guess the answer is guess! :D It may also be trial and error.

– Xilpex
5 hours ago





I guess the answer is guess! :D It may also be trial and error.

– Xilpex
5 hours ago










2 Answers
2






active

oldest

votes


















3














The main problem is that it's an oversimplified assumption to consider an open hole as a perfect open boundary condition for the air column. In fact such a hole still has a significant impedance. On the other side, the mouthpiece is not a perfect closed (reeds) or open (flutes) boundary condition, and also a closed hole still affects the column somewhat. A pitch formula would need to take all those factors into account, which depend on hole size and bore. Doing this accurately would require a big CFD model.



In practice, probably almost every wind instrument maker has instead used empirical models, i.e. basically trial and error. It should certainly be possible to fit a formula to that which is more accurate than the overidealisation but still reasonably accurate, but whether one is available publicly I don't know.






share|improve this answer






























    1














    In a perfect world, the fundamental pitch of a pipe is determined by f = v/2L, where v is the speed of sound and L is the length of the pipe.



    But we don't live in a perfect world.



    Placing a hole in the pipe shortens its length, but the new length - the effective length - isn't the distance to the hole, because that isn't the end of the pipe. The larger the hole, the more it will behave like the ideal. The smaller the hole, the longer the effective length will be.



    Because the hole size is a variable, you're not going to find a formula that's going to fit every situation. That's because the hole size is a variable in relation to the diameter of the tube: a 1cm hole in a 10cm tube will have a different effective length than a 1cm hole in a 9cm tube.



    Since no formula is going to work for all situations, you have do some trial and error. If the pitch is flat, you can enlarge the hole to shorten the effective length. If the pitch is sharp, you'll have to figure out a way to make that hole smaller (or make the whole tube longer - there's a reason woodwinds have multiple pieces!)



    There are other variables, too... conical bores behave differently than cylindrical ones. But I'm assuming you're using a cylindrical tube.






    share|improve this answer























      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "240"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmusic.stackexchange.com%2fquestions%2f82335%2fhow-do-i-know-where-to-place-holes-on-an-instrument%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3














      The main problem is that it's an oversimplified assumption to consider an open hole as a perfect open boundary condition for the air column. In fact such a hole still has a significant impedance. On the other side, the mouthpiece is not a perfect closed (reeds) or open (flutes) boundary condition, and also a closed hole still affects the column somewhat. A pitch formula would need to take all those factors into account, which depend on hole size and bore. Doing this accurately would require a big CFD model.



      In practice, probably almost every wind instrument maker has instead used empirical models, i.e. basically trial and error. It should certainly be possible to fit a formula to that which is more accurate than the overidealisation but still reasonably accurate, but whether one is available publicly I don't know.






      share|improve this answer



























        3














        The main problem is that it's an oversimplified assumption to consider an open hole as a perfect open boundary condition for the air column. In fact such a hole still has a significant impedance. On the other side, the mouthpiece is not a perfect closed (reeds) or open (flutes) boundary condition, and also a closed hole still affects the column somewhat. A pitch formula would need to take all those factors into account, which depend on hole size and bore. Doing this accurately would require a big CFD model.



        In practice, probably almost every wind instrument maker has instead used empirical models, i.e. basically trial and error. It should certainly be possible to fit a formula to that which is more accurate than the overidealisation but still reasonably accurate, but whether one is available publicly I don't know.






        share|improve this answer

























          3












          3








          3







          The main problem is that it's an oversimplified assumption to consider an open hole as a perfect open boundary condition for the air column. In fact such a hole still has a significant impedance. On the other side, the mouthpiece is not a perfect closed (reeds) or open (flutes) boundary condition, and also a closed hole still affects the column somewhat. A pitch formula would need to take all those factors into account, which depend on hole size and bore. Doing this accurately would require a big CFD model.



          In practice, probably almost every wind instrument maker has instead used empirical models, i.e. basically trial and error. It should certainly be possible to fit a formula to that which is more accurate than the overidealisation but still reasonably accurate, but whether one is available publicly I don't know.






          share|improve this answer













          The main problem is that it's an oversimplified assumption to consider an open hole as a perfect open boundary condition for the air column. In fact such a hole still has a significant impedance. On the other side, the mouthpiece is not a perfect closed (reeds) or open (flutes) boundary condition, and also a closed hole still affects the column somewhat. A pitch formula would need to take all those factors into account, which depend on hole size and bore. Doing this accurately would require a big CFD model.



          In practice, probably almost every wind instrument maker has instead used empirical models, i.e. basically trial and error. It should certainly be possible to fit a formula to that which is more accurate than the overidealisation but still reasonably accurate, but whether one is available publicly I don't know.







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered 3 hours ago









          leftaroundaboutleftaroundabout

          20.7k3690




          20.7k3690





















              1














              In a perfect world, the fundamental pitch of a pipe is determined by f = v/2L, where v is the speed of sound and L is the length of the pipe.



              But we don't live in a perfect world.



              Placing a hole in the pipe shortens its length, but the new length - the effective length - isn't the distance to the hole, because that isn't the end of the pipe. The larger the hole, the more it will behave like the ideal. The smaller the hole, the longer the effective length will be.



              Because the hole size is a variable, you're not going to find a formula that's going to fit every situation. That's because the hole size is a variable in relation to the diameter of the tube: a 1cm hole in a 10cm tube will have a different effective length than a 1cm hole in a 9cm tube.



              Since no formula is going to work for all situations, you have do some trial and error. If the pitch is flat, you can enlarge the hole to shorten the effective length. If the pitch is sharp, you'll have to figure out a way to make that hole smaller (or make the whole tube longer - there's a reason woodwinds have multiple pieces!)



              There are other variables, too... conical bores behave differently than cylindrical ones. But I'm assuming you're using a cylindrical tube.






              share|improve this answer



























                1














                In a perfect world, the fundamental pitch of a pipe is determined by f = v/2L, where v is the speed of sound and L is the length of the pipe.



                But we don't live in a perfect world.



                Placing a hole in the pipe shortens its length, but the new length - the effective length - isn't the distance to the hole, because that isn't the end of the pipe. The larger the hole, the more it will behave like the ideal. The smaller the hole, the longer the effective length will be.



                Because the hole size is a variable, you're not going to find a formula that's going to fit every situation. That's because the hole size is a variable in relation to the diameter of the tube: a 1cm hole in a 10cm tube will have a different effective length than a 1cm hole in a 9cm tube.



                Since no formula is going to work for all situations, you have do some trial and error. If the pitch is flat, you can enlarge the hole to shorten the effective length. If the pitch is sharp, you'll have to figure out a way to make that hole smaller (or make the whole tube longer - there's a reason woodwinds have multiple pieces!)



                There are other variables, too... conical bores behave differently than cylindrical ones. But I'm assuming you're using a cylindrical tube.






                share|improve this answer

























                  1












                  1








                  1







                  In a perfect world, the fundamental pitch of a pipe is determined by f = v/2L, where v is the speed of sound and L is the length of the pipe.



                  But we don't live in a perfect world.



                  Placing a hole in the pipe shortens its length, but the new length - the effective length - isn't the distance to the hole, because that isn't the end of the pipe. The larger the hole, the more it will behave like the ideal. The smaller the hole, the longer the effective length will be.



                  Because the hole size is a variable, you're not going to find a formula that's going to fit every situation. That's because the hole size is a variable in relation to the diameter of the tube: a 1cm hole in a 10cm tube will have a different effective length than a 1cm hole in a 9cm tube.



                  Since no formula is going to work for all situations, you have do some trial and error. If the pitch is flat, you can enlarge the hole to shorten the effective length. If the pitch is sharp, you'll have to figure out a way to make that hole smaller (or make the whole tube longer - there's a reason woodwinds have multiple pieces!)



                  There are other variables, too... conical bores behave differently than cylindrical ones. But I'm assuming you're using a cylindrical tube.






                  share|improve this answer













                  In a perfect world, the fundamental pitch of a pipe is determined by f = v/2L, where v is the speed of sound and L is the length of the pipe.



                  But we don't live in a perfect world.



                  Placing a hole in the pipe shortens its length, but the new length - the effective length - isn't the distance to the hole, because that isn't the end of the pipe. The larger the hole, the more it will behave like the ideal. The smaller the hole, the longer the effective length will be.



                  Because the hole size is a variable, you're not going to find a formula that's going to fit every situation. That's because the hole size is a variable in relation to the diameter of the tube: a 1cm hole in a 10cm tube will have a different effective length than a 1cm hole in a 9cm tube.



                  Since no formula is going to work for all situations, you have do some trial and error. If the pitch is flat, you can enlarge the hole to shorten the effective length. If the pitch is sharp, you'll have to figure out a way to make that hole smaller (or make the whole tube longer - there's a reason woodwinds have multiple pieces!)



                  There are other variables, too... conical bores behave differently than cylindrical ones. But I'm assuming you're using a cylindrical tube.







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered 1 hour ago









                  Tom SerbTom Serb

                  1,132110




                  1,132110



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Music: Practice & Theory Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmusic.stackexchange.com%2fquestions%2f82335%2fhow-do-i-know-where-to-place-holes-on-an-instrument%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Are there any AGPL-style licences that require source code modifications to be public? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Force derivative works to be publicAre there any GPL like licenses for Apple App Store?Do you violate the GPL if you provide source code that cannot be compiled?GPL - is it distribution to use libraries in an appliance loaned to customers?Distributing App for free which uses GPL'ed codeModifications of server software under GPL, with web/CLI interfaceDoes using an AGPLv3-licensed library prevent me from dual-licensing my own source code?Can I publish only select code under GPLv3 from a private project?Is there published precedent regarding the scope of covered work that uses AGPL software?If MIT licensed code links to GPL licensed code what should be the license of the resulting binary program?If I use a public API endpoint that has its source code licensed under AGPL in my app, do I need to disclose my source?

                      2013 GY136 Descoberta | Órbita | Referências Menu de navegação«List Of Centaurs and Scattered-Disk Objects»«List of Known Trans-Neptunian Objects»

                      Metrô de Los Teques Índice Linhas | Estações | Ver também | Referências Ligações externas | Menu de navegação«INSTITUCIÓN»«Mapa de rutas»originalMetrô de Los TequesC.A. Metro Los Teques |Alcaldía de Guaicaipuro – Sitio OficialGobernacion de Mirandaeeeeeee