New Order #5: where Fibonacci and Beatty meet at Wythoff Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) The PPCG Site design is on its way - help us make it awesome! Sandbox for Proposed ChallengesNew order #4: WorldNew Order #2: Turn My WayNew Order #1: How does this feel?New Order #3: 5 8 6Print the intersection of sequencesFibonacci ExponentsFind the Fibonacci KernelSum my Fibonaccified divisors!Reverse FibonacciUpper or Lower Wythoff?New Order #1: How does this feel?New Order #2: Turn My WayNew Order #3: 5 8 6New order #4: World

How to colour the US map with Yellow, Green, Red and Blue to minimize the number of states with the colour of Green

What items from the Roman-age tech-level could be used to deter all creatures from entering a small area?

Why does tar appear to skip file contents when output file is /dev/null?

When is phishing education going too far?

Stars Make Stars

Is it possible to ask for a hotel room without minibar/extra services?

Communication vs. Technical skills ,which is more relevant for today's QA engineer positions?

Was credit for the black hole image misattributed?

Can the prologue be the backstory of your main character?

Fishing simulator

Need a suitable toxic chemical for a murder plot in my novel

What are the performance impacts of 'functional' Rust?

What would be Julian Assange's expected punishment, on the current English criminal law?

Classification of bundles, Postnikov towers, obstruction theory, local coefficients

How to rotate it perfectly?

How should I respond to a player wanting to catch a sword between their hands?

Estimated State payment too big --> money back; + 2018 Tax Reform

Why use gamma over alpha radiation?

Interesting examples of non-locally compact topological groups

What computer would be fastest for Mathematica Home Edition?

Why don't the Weasley twins use magic outside of school if the Trace can only find the location of spells cast?

Statistical model of ligand substitution

How do you clear the ApexPages.getMessages() collection in a test?

Single author papers against my advisor's will?



New Order #5: where Fibonacci and Beatty meet at Wythoff



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)
The PPCG Site design is on its way - help us make it awesome!
Sandbox for Proposed ChallengesNew order #4: WorldNew Order #2: Turn My WayNew Order #1: How does this feel?New Order #3: 5 8 6Print the intersection of sequencesFibonacci ExponentsFind the Fibonacci KernelSum my Fibonaccified divisors!Reverse FibonacciUpper or Lower Wythoff?New Order #1: How does this feel?New Order #2: Turn My WayNew Order #3: 5 8 6New order #4: World










5












$begingroup$


Introduction (may be ignored)



Putting all positive numbers in its regular order (1, 2, 3, ...) is a bit boring, isn't it? So here is a series of challenges around permutations (reshuffelings) of all positive numbers. This is the fifth challenge in this series (links to the first, second, third and fourth challenge).



In this challenge, we will meet the Wythoff array, which is a intertwined avalanche of Fibonacci sequences and Beatty sequences!



The Fibonacci numbers are probably for most of you a well known sequence. Given two starting numbers $F_0$ and $F_1$, the following $F_n$ are given by: $F_n = F_(n-1) + F_(n-2)$ for $n>2$.



The Beatty sequence, given a parameter $r$ is: $B^r_n = lfloor rn rfloor$ for $n ge 1$. One of the properties of the Beatty sequence is that for every parameter $r$, there is exactly one parameter $s=r/(r-1)$, such that the Beatty sequences for those parameters are disjunct and joined together, they span all natural numbers excluding 0 (e.g.: $B^r cup B^r/(r-1) = BbbN setminus 0$).



Now here comes the mindblowing part: you can create an array, where each row is a Fibonacci sequence and each column is a Beatty sequence. This array is the Wythoff array. The best part is: every positive number appears exactly once in this array! The array looks like this:



 1 2 3 5 8 13 21 34 55 89 144 ...
4 7 11 18 29 47 76 123 199 322 521 ...
6 10 16 26 42 68 110 178 288 466 754 ...
9 15 24 39 63 102 165 267 432 699 1131 ...
12 20 32 52 84 136 220 356 576 932 1508 ...
14 23 37 60 97 157 254 411 665 1076 1741 ...
17 28 45 73 118 191 309 500 809 1309 2118 ...
19 31 50 81 131 212 343 555 898 1453 2351 ...
22 36 58 94 152 246 398 644 1042 1686 2728 ...
25 41 66 107 173 280 453 733 1186 1919 3105 ...
27 44 71 115 186 301 487 788 1275 2063 3338 ...
...


An element at row $m$ and column $n$ is defined as:



$A_m,n = begincases
A_m,1 = leftlfloor lfloor mvarphi rfloor varphi rightrfloor\
A_m,2 = leftlfloor lfloor mvarphi rfloor varphi^2 rightrfloor\
A_m,n = A_m,n-2+A_m,n-1 text for n > 2
endcases$



where $varphi$ is the golden ratio: $varphi=frac1+sqrt52$.



If we follow the anti-diagonals of this array, we get A035513, which is the target sequence for this challenge (note that this sequence is added to the OEIS by Neil Sloane himself!). Since this is a "pure sequence" challenge, the task is to output $a(n)$ for a given $n$ as input, where $a(n)$ is A035513.



There are different strategies you can follow to get to $a(n)$, which makes this challenge (in my opinion) really interesting.



Task



Given an integer input $n$, output $a(n)$ in integer format, where $a(n)$ is A035513.



Note: 1-based indexing is assumed here; you may use 0-based indexing, so $a(0) = 1; a(1) = 2$, etc. Please mention this in your answer if you choose to use this.



Test cases



Input | Output
---------------
1 | 1
5 | 7
20 | 20
50 | 136
78 | 30
123 | 3194
1234 | 8212236486
3000 | 814
9999 | 740496902
29890 | 637


Rules



  • Input and output are integers (your program should at least support input and output in the range of 1 up to 32767). Note that $a(n)$ goes up to 30 digit numbers in this range...

  • Invalid input (0, floats, strings, negative values, etc.) may lead to unpredicted output, errors or (un)defined behaviour.

  • Default I/O rules apply.


  • Default loopholes are forbidden.

  • This is code-golf, so the shortest answers in bytes wins









share|improve this question









$endgroup$











  • $begingroup$
    So what's the New Order reference here?
    $endgroup$
    – Luis Mendo
    1 hour ago










  • $begingroup$
    @LuisMendo: the avalanche of Fibonacci and Beatty sequences, which form the Wythoff array...
    $endgroup$
    – agtoever
    1 hour ago










  • $begingroup$
    Ah, I completely missed that! Now I feel regret...
    $endgroup$
    – Luis Mendo
    1 hour ago










  • $begingroup$
    Is a floating point representation of phi (or rt(5)) and application of the recurrence going to satisfy the range requirement?
    $endgroup$
    – Jonathan Allan
    1 hour ago










  • $begingroup$
    @JonathanAllan : good point... I'll look into that later. For now: let's pose that if some code passes the test cases, then it works sufficiently.
    $endgroup$
    – agtoever
    1 hour ago
















5












$begingroup$


Introduction (may be ignored)



Putting all positive numbers in its regular order (1, 2, 3, ...) is a bit boring, isn't it? So here is a series of challenges around permutations (reshuffelings) of all positive numbers. This is the fifth challenge in this series (links to the first, second, third and fourth challenge).



In this challenge, we will meet the Wythoff array, which is a intertwined avalanche of Fibonacci sequences and Beatty sequences!



The Fibonacci numbers are probably for most of you a well known sequence. Given two starting numbers $F_0$ and $F_1$, the following $F_n$ are given by: $F_n = F_(n-1) + F_(n-2)$ for $n>2$.



The Beatty sequence, given a parameter $r$ is: $B^r_n = lfloor rn rfloor$ for $n ge 1$. One of the properties of the Beatty sequence is that for every parameter $r$, there is exactly one parameter $s=r/(r-1)$, such that the Beatty sequences for those parameters are disjunct and joined together, they span all natural numbers excluding 0 (e.g.: $B^r cup B^r/(r-1) = BbbN setminus 0$).



Now here comes the mindblowing part: you can create an array, where each row is a Fibonacci sequence and each column is a Beatty sequence. This array is the Wythoff array. The best part is: every positive number appears exactly once in this array! The array looks like this:



 1 2 3 5 8 13 21 34 55 89 144 ...
4 7 11 18 29 47 76 123 199 322 521 ...
6 10 16 26 42 68 110 178 288 466 754 ...
9 15 24 39 63 102 165 267 432 699 1131 ...
12 20 32 52 84 136 220 356 576 932 1508 ...
14 23 37 60 97 157 254 411 665 1076 1741 ...
17 28 45 73 118 191 309 500 809 1309 2118 ...
19 31 50 81 131 212 343 555 898 1453 2351 ...
22 36 58 94 152 246 398 644 1042 1686 2728 ...
25 41 66 107 173 280 453 733 1186 1919 3105 ...
27 44 71 115 186 301 487 788 1275 2063 3338 ...
...


An element at row $m$ and column $n$ is defined as:



$A_m,n = begincases
A_m,1 = leftlfloor lfloor mvarphi rfloor varphi rightrfloor\
A_m,2 = leftlfloor lfloor mvarphi rfloor varphi^2 rightrfloor\
A_m,n = A_m,n-2+A_m,n-1 text for n > 2
endcases$



where $varphi$ is the golden ratio: $varphi=frac1+sqrt52$.



If we follow the anti-diagonals of this array, we get A035513, which is the target sequence for this challenge (note that this sequence is added to the OEIS by Neil Sloane himself!). Since this is a "pure sequence" challenge, the task is to output $a(n)$ for a given $n$ as input, where $a(n)$ is A035513.



There are different strategies you can follow to get to $a(n)$, which makes this challenge (in my opinion) really interesting.



Task



Given an integer input $n$, output $a(n)$ in integer format, where $a(n)$ is A035513.



Note: 1-based indexing is assumed here; you may use 0-based indexing, so $a(0) = 1; a(1) = 2$, etc. Please mention this in your answer if you choose to use this.



Test cases



Input | Output
---------------
1 | 1
5 | 7
20 | 20
50 | 136
78 | 30
123 | 3194
1234 | 8212236486
3000 | 814
9999 | 740496902
29890 | 637


Rules



  • Input and output are integers (your program should at least support input and output in the range of 1 up to 32767). Note that $a(n)$ goes up to 30 digit numbers in this range...

  • Invalid input (0, floats, strings, negative values, etc.) may lead to unpredicted output, errors or (un)defined behaviour.

  • Default I/O rules apply.


  • Default loopholes are forbidden.

  • This is code-golf, so the shortest answers in bytes wins









share|improve this question









$endgroup$











  • $begingroup$
    So what's the New Order reference here?
    $endgroup$
    – Luis Mendo
    1 hour ago










  • $begingroup$
    @LuisMendo: the avalanche of Fibonacci and Beatty sequences, which form the Wythoff array...
    $endgroup$
    – agtoever
    1 hour ago










  • $begingroup$
    Ah, I completely missed that! Now I feel regret...
    $endgroup$
    – Luis Mendo
    1 hour ago










  • $begingroup$
    Is a floating point representation of phi (or rt(5)) and application of the recurrence going to satisfy the range requirement?
    $endgroup$
    – Jonathan Allan
    1 hour ago










  • $begingroup$
    @JonathanAllan : good point... I'll look into that later. For now: let's pose that if some code passes the test cases, then it works sufficiently.
    $endgroup$
    – agtoever
    1 hour ago














5












5








5





$begingroup$


Introduction (may be ignored)



Putting all positive numbers in its regular order (1, 2, 3, ...) is a bit boring, isn't it? So here is a series of challenges around permutations (reshuffelings) of all positive numbers. This is the fifth challenge in this series (links to the first, second, third and fourth challenge).



In this challenge, we will meet the Wythoff array, which is a intertwined avalanche of Fibonacci sequences and Beatty sequences!



The Fibonacci numbers are probably for most of you a well known sequence. Given two starting numbers $F_0$ and $F_1$, the following $F_n$ are given by: $F_n = F_(n-1) + F_(n-2)$ for $n>2$.



The Beatty sequence, given a parameter $r$ is: $B^r_n = lfloor rn rfloor$ for $n ge 1$. One of the properties of the Beatty sequence is that for every parameter $r$, there is exactly one parameter $s=r/(r-1)$, such that the Beatty sequences for those parameters are disjunct and joined together, they span all natural numbers excluding 0 (e.g.: $B^r cup B^r/(r-1) = BbbN setminus 0$).



Now here comes the mindblowing part: you can create an array, where each row is a Fibonacci sequence and each column is a Beatty sequence. This array is the Wythoff array. The best part is: every positive number appears exactly once in this array! The array looks like this:



 1 2 3 5 8 13 21 34 55 89 144 ...
4 7 11 18 29 47 76 123 199 322 521 ...
6 10 16 26 42 68 110 178 288 466 754 ...
9 15 24 39 63 102 165 267 432 699 1131 ...
12 20 32 52 84 136 220 356 576 932 1508 ...
14 23 37 60 97 157 254 411 665 1076 1741 ...
17 28 45 73 118 191 309 500 809 1309 2118 ...
19 31 50 81 131 212 343 555 898 1453 2351 ...
22 36 58 94 152 246 398 644 1042 1686 2728 ...
25 41 66 107 173 280 453 733 1186 1919 3105 ...
27 44 71 115 186 301 487 788 1275 2063 3338 ...
...


An element at row $m$ and column $n$ is defined as:



$A_m,n = begincases
A_m,1 = leftlfloor lfloor mvarphi rfloor varphi rightrfloor\
A_m,2 = leftlfloor lfloor mvarphi rfloor varphi^2 rightrfloor\
A_m,n = A_m,n-2+A_m,n-1 text for n > 2
endcases$



where $varphi$ is the golden ratio: $varphi=frac1+sqrt52$.



If we follow the anti-diagonals of this array, we get A035513, which is the target sequence for this challenge (note that this sequence is added to the OEIS by Neil Sloane himself!). Since this is a "pure sequence" challenge, the task is to output $a(n)$ for a given $n$ as input, where $a(n)$ is A035513.



There are different strategies you can follow to get to $a(n)$, which makes this challenge (in my opinion) really interesting.



Task



Given an integer input $n$, output $a(n)$ in integer format, where $a(n)$ is A035513.



Note: 1-based indexing is assumed here; you may use 0-based indexing, so $a(0) = 1; a(1) = 2$, etc. Please mention this in your answer if you choose to use this.



Test cases



Input | Output
---------------
1 | 1
5 | 7
20 | 20
50 | 136
78 | 30
123 | 3194
1234 | 8212236486
3000 | 814
9999 | 740496902
29890 | 637


Rules



  • Input and output are integers (your program should at least support input and output in the range of 1 up to 32767). Note that $a(n)$ goes up to 30 digit numbers in this range...

  • Invalid input (0, floats, strings, negative values, etc.) may lead to unpredicted output, errors or (un)defined behaviour.

  • Default I/O rules apply.


  • Default loopholes are forbidden.

  • This is code-golf, so the shortest answers in bytes wins









share|improve this question









$endgroup$




Introduction (may be ignored)



Putting all positive numbers in its regular order (1, 2, 3, ...) is a bit boring, isn't it? So here is a series of challenges around permutations (reshuffelings) of all positive numbers. This is the fifth challenge in this series (links to the first, second, third and fourth challenge).



In this challenge, we will meet the Wythoff array, which is a intertwined avalanche of Fibonacci sequences and Beatty sequences!



The Fibonacci numbers are probably for most of you a well known sequence. Given two starting numbers $F_0$ and $F_1$, the following $F_n$ are given by: $F_n = F_(n-1) + F_(n-2)$ for $n>2$.



The Beatty sequence, given a parameter $r$ is: $B^r_n = lfloor rn rfloor$ for $n ge 1$. One of the properties of the Beatty sequence is that for every parameter $r$, there is exactly one parameter $s=r/(r-1)$, such that the Beatty sequences for those parameters are disjunct and joined together, they span all natural numbers excluding 0 (e.g.: $B^r cup B^r/(r-1) = BbbN setminus 0$).



Now here comes the mindblowing part: you can create an array, where each row is a Fibonacci sequence and each column is a Beatty sequence. This array is the Wythoff array. The best part is: every positive number appears exactly once in this array! The array looks like this:



 1 2 3 5 8 13 21 34 55 89 144 ...
4 7 11 18 29 47 76 123 199 322 521 ...
6 10 16 26 42 68 110 178 288 466 754 ...
9 15 24 39 63 102 165 267 432 699 1131 ...
12 20 32 52 84 136 220 356 576 932 1508 ...
14 23 37 60 97 157 254 411 665 1076 1741 ...
17 28 45 73 118 191 309 500 809 1309 2118 ...
19 31 50 81 131 212 343 555 898 1453 2351 ...
22 36 58 94 152 246 398 644 1042 1686 2728 ...
25 41 66 107 173 280 453 733 1186 1919 3105 ...
27 44 71 115 186 301 487 788 1275 2063 3338 ...
...


An element at row $m$ and column $n$ is defined as:



$A_m,n = begincases
A_m,1 = leftlfloor lfloor mvarphi rfloor varphi rightrfloor\
A_m,2 = leftlfloor lfloor mvarphi rfloor varphi^2 rightrfloor\
A_m,n = A_m,n-2+A_m,n-1 text for n > 2
endcases$



where $varphi$ is the golden ratio: $varphi=frac1+sqrt52$.



If we follow the anti-diagonals of this array, we get A035513, which is the target sequence for this challenge (note that this sequence is added to the OEIS by Neil Sloane himself!). Since this is a "pure sequence" challenge, the task is to output $a(n)$ for a given $n$ as input, where $a(n)$ is A035513.



There are different strategies you can follow to get to $a(n)$, which makes this challenge (in my opinion) really interesting.



Task



Given an integer input $n$, output $a(n)$ in integer format, where $a(n)$ is A035513.



Note: 1-based indexing is assumed here; you may use 0-based indexing, so $a(0) = 1; a(1) = 2$, etc. Please mention this in your answer if you choose to use this.



Test cases



Input | Output
---------------
1 | 1
5 | 7
20 | 20
50 | 136
78 | 30
123 | 3194
1234 | 8212236486
3000 | 814
9999 | 740496902
29890 | 637


Rules



  • Input and output are integers (your program should at least support input and output in the range of 1 up to 32767). Note that $a(n)$ goes up to 30 digit numbers in this range...

  • Invalid input (0, floats, strings, negative values, etc.) may lead to unpredicted output, errors or (un)defined behaviour.

  • Default I/O rules apply.


  • Default loopholes are forbidden.

  • This is code-golf, so the shortest answers in bytes wins






code-golf sequence






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked 2 hours ago









agtoeveragtoever

1,354424




1,354424











  • $begingroup$
    So what's the New Order reference here?
    $endgroup$
    – Luis Mendo
    1 hour ago










  • $begingroup$
    @LuisMendo: the avalanche of Fibonacci and Beatty sequences, which form the Wythoff array...
    $endgroup$
    – agtoever
    1 hour ago










  • $begingroup$
    Ah, I completely missed that! Now I feel regret...
    $endgroup$
    – Luis Mendo
    1 hour ago










  • $begingroup$
    Is a floating point representation of phi (or rt(5)) and application of the recurrence going to satisfy the range requirement?
    $endgroup$
    – Jonathan Allan
    1 hour ago










  • $begingroup$
    @JonathanAllan : good point... I'll look into that later. For now: let's pose that if some code passes the test cases, then it works sufficiently.
    $endgroup$
    – agtoever
    1 hour ago

















  • $begingroup$
    So what's the New Order reference here?
    $endgroup$
    – Luis Mendo
    1 hour ago










  • $begingroup$
    @LuisMendo: the avalanche of Fibonacci and Beatty sequences, which form the Wythoff array...
    $endgroup$
    – agtoever
    1 hour ago










  • $begingroup$
    Ah, I completely missed that! Now I feel regret...
    $endgroup$
    – Luis Mendo
    1 hour ago










  • $begingroup$
    Is a floating point representation of phi (or rt(5)) and application of the recurrence going to satisfy the range requirement?
    $endgroup$
    – Jonathan Allan
    1 hour ago










  • $begingroup$
    @JonathanAllan : good point... I'll look into that later. For now: let's pose that if some code passes the test cases, then it works sufficiently.
    $endgroup$
    – agtoever
    1 hour ago
















$begingroup$
So what's the New Order reference here?
$endgroup$
– Luis Mendo
1 hour ago




$begingroup$
So what's the New Order reference here?
$endgroup$
– Luis Mendo
1 hour ago












$begingroup$
@LuisMendo: the avalanche of Fibonacci and Beatty sequences, which form the Wythoff array...
$endgroup$
– agtoever
1 hour ago




$begingroup$
@LuisMendo: the avalanche of Fibonacci and Beatty sequences, which form the Wythoff array...
$endgroup$
– agtoever
1 hour ago












$begingroup$
Ah, I completely missed that! Now I feel regret...
$endgroup$
– Luis Mendo
1 hour ago




$begingroup$
Ah, I completely missed that! Now I feel regret...
$endgroup$
– Luis Mendo
1 hour ago












$begingroup$
Is a floating point representation of phi (or rt(5)) and application of the recurrence going to satisfy the range requirement?
$endgroup$
– Jonathan Allan
1 hour ago




$begingroup$
Is a floating point representation of phi (or rt(5)) and application of the recurrence going to satisfy the range requirement?
$endgroup$
– Jonathan Allan
1 hour ago












$begingroup$
@JonathanAllan : good point... I'll look into that later. For now: let's pose that if some code passes the test cases, then it works sufficiently.
$endgroup$
– agtoever
1 hour ago





$begingroup$
@JonathanAllan : good point... I'll look into that later. For now: let's pose that if some code passes the test cases, then it works sufficiently.
$endgroup$
– agtoever
1 hour ago











3 Answers
3






active

oldest

votes


















0












$begingroup$


Wolfram Language (Mathematica), 90 bytes



Flatten[Table[(F=Fibonacci)[a+1]⌊(b-a+1)GoldenRatio⌋+(b-a)F@a,b,#,a,b,1,-1]][[#]]&


Try it online!






share|improve this answer









$endgroup$




















    0












    $begingroup$


    Jelly, 30 bytes



    If 9999 is really meant to yield 740496902 and not 108240 then I got something wrong



    p`SÞ⁸ịð;Øp,²;¤×Ḟ¥/;+ƝQƊ⁹¡ị@ð/


    Try it online!

    This is a little slow, but a huge improvement is made with a prefix of Ḥ½Ċ (double, square-root, ceiling) like in this test-suite.






    share|improve this answer









    $endgroup$








    • 1




      $begingroup$
      you are right! 740496902 is the result for 999
      $endgroup$
      – J42161217
      7 mins ago


















    0












    $begingroup$


    Jelly, 27 bytes



    RṁṬ€œið’;×ØpḞ¥×ạ‘+Ø.ÆḞʋSð@/


    Try it online!



    Monadic link using 1-based indexing. I’m sure there’s a better way of generating the row/column indices from n, but this works ok. In its shortest form it’s too slow for larger n on TIO, so the following Try it online! reduces the size initial triangular list at the cost of three bytes.





    share









    $endgroup$













      Your Answer






      StackExchange.ifUsing("editor", function ()
      StackExchange.using("externalEditor", function ()
      StackExchange.using("snippets", function ()
      StackExchange.snippets.init();
      );
      );
      , "code-snippets");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "200"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodegolf.stackexchange.com%2fquestions%2f183186%2fnew-order-5-where-fibonacci-and-beatty-meet-at-wythoff%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      0












      $begingroup$


      Wolfram Language (Mathematica), 90 bytes



      Flatten[Table[(F=Fibonacci)[a+1]⌊(b-a+1)GoldenRatio⌋+(b-a)F@a,b,#,a,b,1,-1]][[#]]&


      Try it online!






      share|improve this answer









      $endgroup$

















        0












        $begingroup$


        Wolfram Language (Mathematica), 90 bytes



        Flatten[Table[(F=Fibonacci)[a+1]⌊(b-a+1)GoldenRatio⌋+(b-a)F@a,b,#,a,b,1,-1]][[#]]&


        Try it online!






        share|improve this answer









        $endgroup$















          0












          0








          0





          $begingroup$


          Wolfram Language (Mathematica), 90 bytes



          Flatten[Table[(F=Fibonacci)[a+1]⌊(b-a+1)GoldenRatio⌋+(b-a)F@a,b,#,a,b,1,-1]][[#]]&


          Try it online!






          share|improve this answer









          $endgroup$




          Wolfram Language (Mathematica), 90 bytes



          Flatten[Table[(F=Fibonacci)[a+1]⌊(b-a+1)GoldenRatio⌋+(b-a)F@a,b,#,a,b,1,-1]][[#]]&


          Try it online!







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered 1 hour ago









          J42161217J42161217

          14k21353




          14k21353





















              0












              $begingroup$


              Jelly, 30 bytes



              If 9999 is really meant to yield 740496902 and not 108240 then I got something wrong



              p`SÞ⁸ịð;Øp,²;¤×Ḟ¥/;+ƝQƊ⁹¡ị@ð/


              Try it online!

              This is a little slow, but a huge improvement is made with a prefix of Ḥ½Ċ (double, square-root, ceiling) like in this test-suite.






              share|improve this answer









              $endgroup$








              • 1




                $begingroup$
                you are right! 740496902 is the result for 999
                $endgroup$
                – J42161217
                7 mins ago















              0












              $begingroup$


              Jelly, 30 bytes



              If 9999 is really meant to yield 740496902 and not 108240 then I got something wrong



              p`SÞ⁸ịð;Øp,²;¤×Ḟ¥/;+ƝQƊ⁹¡ị@ð/


              Try it online!

              This is a little slow, but a huge improvement is made with a prefix of Ḥ½Ċ (double, square-root, ceiling) like in this test-suite.






              share|improve this answer









              $endgroup$








              • 1




                $begingroup$
                you are right! 740496902 is the result for 999
                $endgroup$
                – J42161217
                7 mins ago













              0












              0








              0





              $begingroup$


              Jelly, 30 bytes



              If 9999 is really meant to yield 740496902 and not 108240 then I got something wrong



              p`SÞ⁸ịð;Øp,²;¤×Ḟ¥/;+ƝQƊ⁹¡ị@ð/


              Try it online!

              This is a little slow, but a huge improvement is made with a prefix of Ḥ½Ċ (double, square-root, ceiling) like in this test-suite.






              share|improve this answer









              $endgroup$




              Jelly, 30 bytes



              If 9999 is really meant to yield 740496902 and not 108240 then I got something wrong



              p`SÞ⁸ịð;Øp,²;¤×Ḟ¥/;+ƝQƊ⁹¡ị@ð/


              Try it online!

              This is a little slow, but a huge improvement is made with a prefix of Ḥ½Ċ (double, square-root, ceiling) like in this test-suite.







              share|improve this answer












              share|improve this answer



              share|improve this answer










              answered 11 mins ago









              Jonathan AllanJonathan Allan

              54.3k537174




              54.3k537174







              • 1




                $begingroup$
                you are right! 740496902 is the result for 999
                $endgroup$
                – J42161217
                7 mins ago












              • 1




                $begingroup$
                you are right! 740496902 is the result for 999
                $endgroup$
                – J42161217
                7 mins ago







              1




              1




              $begingroup$
              you are right! 740496902 is the result for 999
              $endgroup$
              – J42161217
              7 mins ago




              $begingroup$
              you are right! 740496902 is the result for 999
              $endgroup$
              – J42161217
              7 mins ago











              0












              $begingroup$


              Jelly, 27 bytes



              RṁṬ€œið’;×ØpḞ¥×ạ‘+Ø.ÆḞʋSð@/


              Try it online!



              Monadic link using 1-based indexing. I’m sure there’s a better way of generating the row/column indices from n, but this works ok. In its shortest form it’s too slow for larger n on TIO, so the following Try it online! reduces the size initial triangular list at the cost of three bytes.





              share









              $endgroup$

















                0












                $begingroup$


                Jelly, 27 bytes



                RṁṬ€œið’;×ØpḞ¥×ạ‘+Ø.ÆḞʋSð@/


                Try it online!



                Monadic link using 1-based indexing. I’m sure there’s a better way of generating the row/column indices from n, but this works ok. In its shortest form it’s too slow for larger n on TIO, so the following Try it online! reduces the size initial triangular list at the cost of three bytes.





                share









                $endgroup$















                  0












                  0








                  0





                  $begingroup$


                  Jelly, 27 bytes



                  RṁṬ€œið’;×ØpḞ¥×ạ‘+Ø.ÆḞʋSð@/


                  Try it online!



                  Monadic link using 1-based indexing. I’m sure there’s a better way of generating the row/column indices from n, but this works ok. In its shortest form it’s too slow for larger n on TIO, so the following Try it online! reduces the size initial triangular list at the cost of three bytes.





                  share









                  $endgroup$




                  Jelly, 27 bytes



                  RṁṬ€œið’;×ØpḞ¥×ạ‘+Ø.ÆḞʋSð@/


                  Try it online!



                  Monadic link using 1-based indexing. I’m sure there’s a better way of generating the row/column indices from n, but this works ok. In its shortest form it’s too slow for larger n on TIO, so the following Try it online! reduces the size initial triangular list at the cost of three bytes.






                  share











                  share


                  share










                  answered 7 mins ago









                  Nick KennedyNick Kennedy

                  1,55649




                  1,55649



























                      draft saved

                      draft discarded
















































                      If this is an answer to a challenge…



                      • …Be sure to follow the challenge specification. However, please refrain from exploiting obvious loopholes. Answers abusing any of the standard loopholes are considered invalid. If you think a specification is unclear or underspecified, comment on the question instead.


                      • …Try to optimize your score. For instance, answers to code-golf challenges should attempt to be as short as possible. You can always include a readable version of the code in addition to the competitive one.
                        Explanations of your answer make it more interesting to read and are very much encouraged.


                      • …Include a short header which indicates the language(s) of your code and its score, as defined by the challenge.


                      More generally…



                      • …Please make sure to answer the question and provide sufficient detail.


                      • …Avoid asking for help, clarification or responding to other answers (use comments instead).




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodegolf.stackexchange.com%2fquestions%2f183186%2fnew-order-5-where-fibonacci-and-beatty-meet-at-wythoff%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Are there any AGPL-style licences that require source code modifications to be public? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Force derivative works to be publicAre there any GPL like licenses for Apple App Store?Do you violate the GPL if you provide source code that cannot be compiled?GPL - is it distribution to use libraries in an appliance loaned to customers?Distributing App for free which uses GPL'ed codeModifications of server software under GPL, with web/CLI interfaceDoes using an AGPLv3-licensed library prevent me from dual-licensing my own source code?Can I publish only select code under GPLv3 from a private project?Is there published precedent regarding the scope of covered work that uses AGPL software?If MIT licensed code links to GPL licensed code what should be the license of the resulting binary program?If I use a public API endpoint that has its source code licensed under AGPL in my app, do I need to disclose my source?

                      2013 GY136 Descoberta | Órbita | Referências Menu de navegação«List Of Centaurs and Scattered-Disk Objects»«List of Known Trans-Neptunian Objects»

                      Metrô de Los Teques Índice Linhas | Estações | Ver também | Referências Ligações externas | Menu de navegação«INSTITUCIÓN»«Mapa de rutas»originalMetrô de Los TequesC.A. Metro Los Teques |Alcaldía de Guaicaipuro – Sitio OficialGobernacion de Mirandaeeeeeee