What loss function to use when labels are probabilities? Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Why would neural networks be a particularly good framework for “embodied AI”?Understanding GAN Loss functionHelp with implementing Q-learning for a feedfoward network playing a video gameHow do I implement softmax forward propagation and backpropagation to replace sigmoid in a neural network?Gradient of hinge loss functionHow to understand marginal loglikelihood objective function as loss function (explanation of an article)?What is batch / batch size in neural networks?Comparing and studying Loss FunctionsLoss function spikesPredicting sine using LSTM: Small output range and delayed output?

What is the order of Mitzvot in Rambam's Sefer Hamitzvot?

Replacing HDD with SSD; what about non-APFS/APFS?

Single author papers against my advisor's will?

What do you call the holes in a flute?

Can a non-EU citizen traveling with me come with me through the EU passport line?

Simulating Exploding Dice

If I can make up priors, why can't I make up posteriors?

Can a zero nonce be safely used with AES-GCM if the key is random and never used again?

Blender game recording at the wrong time

Can the prologue be the backstory of your main character?

How to politely respond to generic emails requesting a PhD/job in my lab? Without wasting too much time

Why is there no army of Iron-Mans in the MCU?

How can I make names more distinctive without making them longer?

Is there a documented rationale why the House Ways and Means chairman can demand tax info?

What do you call a plan that's an alternative plan in case your initial plan fails?

Is drag coefficient lowest at zero angle of attack?

Can smartphones with the same camera sensor have different image quality?

3 doors, three guards, one stone

How many things? AとBがふたつ

Strange behaviour of Check

Why use gamma over alpha radiation?

90's book, teen horror

Windows 10: How to Lock (not sleep) laptop on lid close?

What loss function to use when labels are probabilities?



What loss function to use when labels are probabilities?



Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)
Announcing the arrival of Valued Associate #679: Cesar Manara
Unicorn Meta Zoo #1: Why another podcast?Why would neural networks be a particularly good framework for “embodied AI”?Understanding GAN Loss functionHelp with implementing Q-learning for a feedfoward network playing a video gameHow do I implement softmax forward propagation and backpropagation to replace sigmoid in a neural network?Gradient of hinge loss functionHow to understand marginal loglikelihood objective function as loss function (explanation of an article)?What is batch / batch size in neural networks?Comparing and studying Loss FunctionsLoss function spikesPredicting sine using LSTM: Small output range and delayed output?



.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








2












$begingroup$


What loss function is most appropriate when training a model with target values that are probabilities? For example, I have a 3-output model with x=[some features] and y=[0.2, 0.3, 0.5].



It seems like something like cross-entropy doesn't make sense here since it assumes that a single target is the correct label.



Would something like MSE (after applying softmax) make sense, or is there a better loss function?










share|improve this question







New contributor




Thomas Johnson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$


















    2












    $begingroup$


    What loss function is most appropriate when training a model with target values that are probabilities? For example, I have a 3-output model with x=[some features] and y=[0.2, 0.3, 0.5].



    It seems like something like cross-entropy doesn't make sense here since it assumes that a single target is the correct label.



    Would something like MSE (after applying softmax) make sense, or is there a better loss function?










    share|improve this question







    New contributor




    Thomas Johnson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      2












      2








      2





      $begingroup$


      What loss function is most appropriate when training a model with target values that are probabilities? For example, I have a 3-output model with x=[some features] and y=[0.2, 0.3, 0.5].



      It seems like something like cross-entropy doesn't make sense here since it assumes that a single target is the correct label.



      Would something like MSE (after applying softmax) make sense, or is there a better loss function?










      share|improve this question







      New contributor




      Thomas Johnson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      What loss function is most appropriate when training a model with target values that are probabilities? For example, I have a 3-output model with x=[some features] and y=[0.2, 0.3, 0.5].



      It seems like something like cross-entropy doesn't make sense here since it assumes that a single target is the correct label.



      Would something like MSE (after applying softmax) make sense, or is there a better loss function?







      neural-networks loss-functions probability-distribution






      share|improve this question







      New contributor




      Thomas Johnson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|improve this question







      New contributor




      Thomas Johnson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|improve this question




      share|improve this question






      New contributor




      Thomas Johnson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 7 hours ago









      Thomas JohnsonThomas Johnson

      1133




      1133




      New contributor




      Thomas Johnson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Thomas Johnson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Thomas Johnson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          Actually, the cross-entropy loss function would be appropriate here, since it measures the "distance" between a distribution $q$ and the "true" distribution $p$.



          You are right, though, that using a loss function called "cross_entropy" in many APIs would be a mistake. This is because these functions, as you said, assume a one-hot label. You would need to use the general cross-entropy function,



          $$H(p,q)=-sum_xin X p(x) log q(x).$$
          $ $



          Note that one-hot labels would mean that
          $$
          p(x) =
          begincases
          1 & textif x text is the true label\
          0 & textotherwise
          endcases$$



          which causes the cross-entropy $H(p,q)$ to reduce to the form you're familiar with:



          $$H(p,q) = -log q(x_label)$$






          share|improve this answer









          $endgroup$













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "658"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );






            Thomas Johnson is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fai.stackexchange.com%2fquestions%2f11816%2fwhat-loss-function-to-use-when-labels-are-probabilities%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            Actually, the cross-entropy loss function would be appropriate here, since it measures the "distance" between a distribution $q$ and the "true" distribution $p$.



            You are right, though, that using a loss function called "cross_entropy" in many APIs would be a mistake. This is because these functions, as you said, assume a one-hot label. You would need to use the general cross-entropy function,



            $$H(p,q)=-sum_xin X p(x) log q(x).$$
            $ $



            Note that one-hot labels would mean that
            $$
            p(x) =
            begincases
            1 & textif x text is the true label\
            0 & textotherwise
            endcases$$



            which causes the cross-entropy $H(p,q)$ to reduce to the form you're familiar with:



            $$H(p,q) = -log q(x_label)$$






            share|improve this answer









            $endgroup$

















              3












              $begingroup$

              Actually, the cross-entropy loss function would be appropriate here, since it measures the "distance" between a distribution $q$ and the "true" distribution $p$.



              You are right, though, that using a loss function called "cross_entropy" in many APIs would be a mistake. This is because these functions, as you said, assume a one-hot label. You would need to use the general cross-entropy function,



              $$H(p,q)=-sum_xin X p(x) log q(x).$$
              $ $



              Note that one-hot labels would mean that
              $$
              p(x) =
              begincases
              1 & textif x text is the true label\
              0 & textotherwise
              endcases$$



              which causes the cross-entropy $H(p,q)$ to reduce to the form you're familiar with:



              $$H(p,q) = -log q(x_label)$$






              share|improve this answer









              $endgroup$















                3












                3








                3





                $begingroup$

                Actually, the cross-entropy loss function would be appropriate here, since it measures the "distance" between a distribution $q$ and the "true" distribution $p$.



                You are right, though, that using a loss function called "cross_entropy" in many APIs would be a mistake. This is because these functions, as you said, assume a one-hot label. You would need to use the general cross-entropy function,



                $$H(p,q)=-sum_xin X p(x) log q(x).$$
                $ $



                Note that one-hot labels would mean that
                $$
                p(x) =
                begincases
                1 & textif x text is the true label\
                0 & textotherwise
                endcases$$



                which causes the cross-entropy $H(p,q)$ to reduce to the form you're familiar with:



                $$H(p,q) = -log q(x_label)$$






                share|improve this answer









                $endgroup$



                Actually, the cross-entropy loss function would be appropriate here, since it measures the "distance" between a distribution $q$ and the "true" distribution $p$.



                You are right, though, that using a loss function called "cross_entropy" in many APIs would be a mistake. This is because these functions, as you said, assume a one-hot label. You would need to use the general cross-entropy function,



                $$H(p,q)=-sum_xin X p(x) log q(x).$$
                $ $



                Note that one-hot labels would mean that
                $$
                p(x) =
                begincases
                1 & textif x text is the true label\
                0 & textotherwise
                endcases$$



                which causes the cross-entropy $H(p,q)$ to reduce to the form you're familiar with:



                $$H(p,q) = -log q(x_label)$$







                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered 6 hours ago









                Philip RaeisghasemPhilip Raeisghasem

                988119




                988119




















                    Thomas Johnson is a new contributor. Be nice, and check out our Code of Conduct.









                    draft saved

                    draft discarded


















                    Thomas Johnson is a new contributor. Be nice, and check out our Code of Conduct.












                    Thomas Johnson is a new contributor. Be nice, and check out our Code of Conduct.











                    Thomas Johnson is a new contributor. Be nice, and check out our Code of Conduct.














                    Thanks for contributing an answer to Artificial Intelligence Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fai.stackexchange.com%2fquestions%2f11816%2fwhat-loss-function-to-use-when-labels-are-probabilities%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Are there any AGPL-style licences that require source code modifications to be public? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Force derivative works to be publicAre there any GPL like licenses for Apple App Store?Do you violate the GPL if you provide source code that cannot be compiled?GPL - is it distribution to use libraries in an appliance loaned to customers?Distributing App for free which uses GPL'ed codeModifications of server software under GPL, with web/CLI interfaceDoes using an AGPLv3-licensed library prevent me from dual-licensing my own source code?Can I publish only select code under GPLv3 from a private project?Is there published precedent regarding the scope of covered work that uses AGPL software?If MIT licensed code links to GPL licensed code what should be the license of the resulting binary program?If I use a public API endpoint that has its source code licensed under AGPL in my app, do I need to disclose my source?

                    2013 GY136 Descoberta | Órbita | Referências Menu de navegação«List Of Centaurs and Scattered-Disk Objects»«List of Known Trans-Neptunian Objects»

                    Metrô de Los Teques Índice Linhas | Estações | Ver também | Referências Ligações externas | Menu de navegação«INSTITUCIÓN»«Mapa de rutas»originalMetrô de Los TequesC.A. Metro Los Teques |Alcaldía de Guaicaipuro – Sitio OficialGobernacion de Mirandaeeeeeee