Tannaka duality for semisimple groups Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?What algebraic group does Tannaka-Krein reconstruct when fed the category of modules of a non-algebraic Lie algebra?Tannaka formalism and the étale fundamental groupIs there a ``path'' between any two fiber functors over the same field in Tannakian formalism?Counter example in Tannaka reconstruction?Recovering classical Tannaka duality from Lurie's version for geometric stacksTannaka DualityCan one explain Tannaka-Krein duality for a finite-group to … a computer ? (How to make input for reconstruction to be finite datum?)Tannakian Formalism for the Quaternions and Dihedral GroupTannakian theory for Lie algebrasIs it possible to reconstruct a finitely generated group from its category of representations?

Tannaka duality for semisimple groups



Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)
Announcing the arrival of Valued Associate #679: Cesar Manara
Unicorn Meta Zoo #1: Why another podcast?What algebraic group does Tannaka-Krein reconstruct when fed the category of modules of a non-algebraic Lie algebra?Tannaka formalism and the étale fundamental groupIs there a ``path'' between any two fiber functors over the same field in Tannakian formalism?Counter example in Tannaka reconstruction?Recovering classical Tannaka duality from Lurie's version for geometric stacksTannaka DualityCan one explain Tannaka-Krein duality for a finite-group to … a computer ? (How to make input for reconstruction to be finite datum?)Tannakian Formalism for the Quaternions and Dihedral GroupTannakian theory for Lie algebrasIs it possible to reconstruct a finitely generated group from its category of representations?










2












$begingroup$


Tannakian formalism tells us that for any rigid, symmetric monoidal, semisimple category $mathcalC$ equipped with a fiber functor $F: mathcalC to Vect_k$ for a field $k$ (of characteristic $0$) there exists a reductive algebraic group $G cong Aut(F)$ such that $mathcalC cong Rep(G)$. This means that any such category is associated with a root datum.



Is there a version of this reconstruction theorem that will tell us when a category $mathcalC$ is the category of finite dimensional representations of a semisimple group? I would like to be able to associate with a Tannakian category a root system, and not just a root datum.










share|cite|improve this question









$endgroup$
















    2












    $begingroup$


    Tannakian formalism tells us that for any rigid, symmetric monoidal, semisimple category $mathcalC$ equipped with a fiber functor $F: mathcalC to Vect_k$ for a field $k$ (of characteristic $0$) there exists a reductive algebraic group $G cong Aut(F)$ such that $mathcalC cong Rep(G)$. This means that any such category is associated with a root datum.



    Is there a version of this reconstruction theorem that will tell us when a category $mathcalC$ is the category of finite dimensional representations of a semisimple group? I would like to be able to associate with a Tannakian category a root system, and not just a root datum.










    share|cite|improve this question









    $endgroup$














      2












      2








      2





      $begingroup$


      Tannakian formalism tells us that for any rigid, symmetric monoidal, semisimple category $mathcalC$ equipped with a fiber functor $F: mathcalC to Vect_k$ for a field $k$ (of characteristic $0$) there exists a reductive algebraic group $G cong Aut(F)$ such that $mathcalC cong Rep(G)$. This means that any such category is associated with a root datum.



      Is there a version of this reconstruction theorem that will tell us when a category $mathcalC$ is the category of finite dimensional representations of a semisimple group? I would like to be able to associate with a Tannakian category a root system, and not just a root datum.










      share|cite|improve this question









      $endgroup$




      Tannakian formalism tells us that for any rigid, symmetric monoidal, semisimple category $mathcalC$ equipped with a fiber functor $F: mathcalC to Vect_k$ for a field $k$ (of characteristic $0$) there exists a reductive algebraic group $G cong Aut(F)$ such that $mathcalC cong Rep(G)$. This means that any such category is associated with a root datum.



      Is there a version of this reconstruction theorem that will tell us when a category $mathcalC$ is the category of finite dimensional representations of a semisimple group? I would like to be able to associate with a Tannakian category a root system, and not just a root datum.







      ag.algebraic-geometry rt.representation-theory ct.category-theory tannakian-category






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 2 hours ago









      leibnewtzleibnewtz

      55428




      55428




















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          In order for $mathcal C$ to come from an algebraic group rather than a pro-algebraic one, you want $mathcal C$ to be finitely generated. And for semisimplicity, you want the group to have finite center. The center can be read off from the category. Cf. my paper “On the center of a compact group”, Intern. Math. Res. Notes. 2004:51, 2751-2756 (2004) or math.CT/0312257.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Ah this is excellent! So that claim is that a semisimple, finitely generated, rigid, symmetric monoidal abelian category with a fiber functor is the category of representations of a semisimple algebraic group if and only if the chain group of the category is finite. Is this correct?
            $endgroup$
            – leibnewtz
            51 mins ago










          • $begingroup$
            I think so. But I’m more into topological groups...
            $endgroup$
            – M Mueger
            47 mins ago










          • $begingroup$
            Nothing here forces the group to be connected, and this finite center criterion holds only for connected groups (try $O(2)$).
            $endgroup$
            – Will Sawin
            30 mins ago


















          1












          $begingroup$

          Another criterion is that there should be only finitely many objects of bounded dimension. This condition might be easy to check in practice from abstract finiteness theorems. The proof is that, if the group is not semi simple, you can take any 1-dimensional character of the identity component and induce up to the main group. Because there are infinitely many characters, infinitely many representations.






          share|cite|improve this answer









          $endgroup$













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "504"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f328495%2ftannaka-duality-for-semisimple-groups%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            In order for $mathcal C$ to come from an algebraic group rather than a pro-algebraic one, you want $mathcal C$ to be finitely generated. And for semisimplicity, you want the group to have finite center. The center can be read off from the category. Cf. my paper “On the center of a compact group”, Intern. Math. Res. Notes. 2004:51, 2751-2756 (2004) or math.CT/0312257.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              Ah this is excellent! So that claim is that a semisimple, finitely generated, rigid, symmetric monoidal abelian category with a fiber functor is the category of representations of a semisimple algebraic group if and only if the chain group of the category is finite. Is this correct?
              $endgroup$
              – leibnewtz
              51 mins ago










            • $begingroup$
              I think so. But I’m more into topological groups...
              $endgroup$
              – M Mueger
              47 mins ago










            • $begingroup$
              Nothing here forces the group to be connected, and this finite center criterion holds only for connected groups (try $O(2)$).
              $endgroup$
              – Will Sawin
              30 mins ago















            2












            $begingroup$

            In order for $mathcal C$ to come from an algebraic group rather than a pro-algebraic one, you want $mathcal C$ to be finitely generated. And for semisimplicity, you want the group to have finite center. The center can be read off from the category. Cf. my paper “On the center of a compact group”, Intern. Math. Res. Notes. 2004:51, 2751-2756 (2004) or math.CT/0312257.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              Ah this is excellent! So that claim is that a semisimple, finitely generated, rigid, symmetric monoidal abelian category with a fiber functor is the category of representations of a semisimple algebraic group if and only if the chain group of the category is finite. Is this correct?
              $endgroup$
              – leibnewtz
              51 mins ago










            • $begingroup$
              I think so. But I’m more into topological groups...
              $endgroup$
              – M Mueger
              47 mins ago










            • $begingroup$
              Nothing here forces the group to be connected, and this finite center criterion holds only for connected groups (try $O(2)$).
              $endgroup$
              – Will Sawin
              30 mins ago













            2












            2








            2





            $begingroup$

            In order for $mathcal C$ to come from an algebraic group rather than a pro-algebraic one, you want $mathcal C$ to be finitely generated. And for semisimplicity, you want the group to have finite center. The center can be read off from the category. Cf. my paper “On the center of a compact group”, Intern. Math. Res. Notes. 2004:51, 2751-2756 (2004) or math.CT/0312257.






            share|cite|improve this answer









            $endgroup$



            In order for $mathcal C$ to come from an algebraic group rather than a pro-algebraic one, you want $mathcal C$ to be finitely generated. And for semisimplicity, you want the group to have finite center. The center can be read off from the category. Cf. my paper “On the center of a compact group”, Intern. Math. Res. Notes. 2004:51, 2751-2756 (2004) or math.CT/0312257.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 1 hour ago









            M MuegerM Mueger

            1635




            1635











            • $begingroup$
              Ah this is excellent! So that claim is that a semisimple, finitely generated, rigid, symmetric monoidal abelian category with a fiber functor is the category of representations of a semisimple algebraic group if and only if the chain group of the category is finite. Is this correct?
              $endgroup$
              – leibnewtz
              51 mins ago










            • $begingroup$
              I think so. But I’m more into topological groups...
              $endgroup$
              – M Mueger
              47 mins ago










            • $begingroup$
              Nothing here forces the group to be connected, and this finite center criterion holds only for connected groups (try $O(2)$).
              $endgroup$
              – Will Sawin
              30 mins ago
















            • $begingroup$
              Ah this is excellent! So that claim is that a semisimple, finitely generated, rigid, symmetric monoidal abelian category with a fiber functor is the category of representations of a semisimple algebraic group if and only if the chain group of the category is finite. Is this correct?
              $endgroup$
              – leibnewtz
              51 mins ago










            • $begingroup$
              I think so. But I’m more into topological groups...
              $endgroup$
              – M Mueger
              47 mins ago










            • $begingroup$
              Nothing here forces the group to be connected, and this finite center criterion holds only for connected groups (try $O(2)$).
              $endgroup$
              – Will Sawin
              30 mins ago















            $begingroup$
            Ah this is excellent! So that claim is that a semisimple, finitely generated, rigid, symmetric monoidal abelian category with a fiber functor is the category of representations of a semisimple algebraic group if and only if the chain group of the category is finite. Is this correct?
            $endgroup$
            – leibnewtz
            51 mins ago




            $begingroup$
            Ah this is excellent! So that claim is that a semisimple, finitely generated, rigid, symmetric monoidal abelian category with a fiber functor is the category of representations of a semisimple algebraic group if and only if the chain group of the category is finite. Is this correct?
            $endgroup$
            – leibnewtz
            51 mins ago












            $begingroup$
            I think so. But I’m more into topological groups...
            $endgroup$
            – M Mueger
            47 mins ago




            $begingroup$
            I think so. But I’m more into topological groups...
            $endgroup$
            – M Mueger
            47 mins ago












            $begingroup$
            Nothing here forces the group to be connected, and this finite center criterion holds only for connected groups (try $O(2)$).
            $endgroup$
            – Will Sawin
            30 mins ago




            $begingroup$
            Nothing here forces the group to be connected, and this finite center criterion holds only for connected groups (try $O(2)$).
            $endgroup$
            – Will Sawin
            30 mins ago











            1












            $begingroup$

            Another criterion is that there should be only finitely many objects of bounded dimension. This condition might be easy to check in practice from abstract finiteness theorems. The proof is that, if the group is not semi simple, you can take any 1-dimensional character of the identity component and induce up to the main group. Because there are infinitely many characters, infinitely many representations.






            share|cite|improve this answer









            $endgroup$

















              1












              $begingroup$

              Another criterion is that there should be only finitely many objects of bounded dimension. This condition might be easy to check in practice from abstract finiteness theorems. The proof is that, if the group is not semi simple, you can take any 1-dimensional character of the identity component and induce up to the main group. Because there are infinitely many characters, infinitely many representations.






              share|cite|improve this answer









              $endgroup$















                1












                1








                1





                $begingroup$

                Another criterion is that there should be only finitely many objects of bounded dimension. This condition might be easy to check in practice from abstract finiteness theorems. The proof is that, if the group is not semi simple, you can take any 1-dimensional character of the identity component and induce up to the main group. Because there are infinitely many characters, infinitely many representations.






                share|cite|improve this answer









                $endgroup$



                Another criterion is that there should be only finitely many objects of bounded dimension. This condition might be easy to check in practice from abstract finiteness theorems. The proof is that, if the group is not semi simple, you can take any 1-dimensional character of the identity component and induce up to the main group. Because there are infinitely many characters, infinitely many representations.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 31 mins ago









                Will SawinWill Sawin

                68.7k7140285




                68.7k7140285



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to MathOverflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f328495%2ftannaka-duality-for-semisimple-groups%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Are there any AGPL-style licences that require source code modifications to be public? Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Force derivative works to be publicAre there any GPL like licenses for Apple App Store?Do you violate the GPL if you provide source code that cannot be compiled?GPL - is it distribution to use libraries in an appliance loaned to customers?Distributing App for free which uses GPL'ed codeModifications of server software under GPL, with web/CLI interfaceDoes using an AGPLv3-licensed library prevent me from dual-licensing my own source code?Can I publish only select code under GPLv3 from a private project?Is there published precedent regarding the scope of covered work that uses AGPL software?If MIT licensed code links to GPL licensed code what should be the license of the resulting binary program?If I use a public API endpoint that has its source code licensed under AGPL in my app, do I need to disclose my source?

                    2013 GY136 Descoberta | Órbita | Referências Menu de navegação«List Of Centaurs and Scattered-Disk Objects»«List of Known Trans-Neptunian Objects»

                    Mortes em março de 2019 Referências Menu de navegação«Zhores Alferov, Nobel de Física bielorrusso, morre aos 88 anos - Ciência»«Fallece Rafael Torija, o bispo emérito de Ciudad Real»«Peter Hurford dies at 88»«Keith Flint, vocalista do The Prodigy, morre aos 49 anos»«Luke Perry, ator de 'Barrados no baile' e 'Riverdale', morre aos 52 anos»«Former Rangers and Scotland captain Eric Caldow dies, aged 84»«Morreu, aos 61 anos, a antiga lenda do wrestling King Kong Bundy»«Fallece el actor y director teatral Abraham Stavans»«In Memoriam Guillaume Faye»«Sidney Sheinberg, a Force Behind Universal and Spielberg, Is Dead at 84»«Carmine Persico, Colombo Crime Family Boss, Is Dead at 85»«Dirigent Michael Gielen gestorben»«Ciclista tricampeã mundial e prata na Rio 2016 é encontrada morta em casa aos 23 anos»«Pagan Community Notes: Raven Grimassi dies, Indianapolis pop-up event cancelled, Circle Sanctuary announces new podcast, and more!»«Hal Blaine, Wrecking Crew Drummer, Dies at 90»«Morre Coutinho, que editou dupla lendária com Pelé no Santos»«Cantor Demétrius, ídolo da Jovem Guarda, morre em SP»«Ex-presidente do Vasco, Eurico Miranda morre no Rio de Janeiro»«Bronze no Mundial de basquete de 1971, Laís Elena morre aos 76 anos»«Diretor de Corridas da F1, Charlie Whiting morre aos 66 anos às vésperas do GP da Austrália»«Morreu o cardeal Danneels, da Bélgica»«Morreu o cartoonista Augusto Cid»«Morreu a atriz Maria Isabel de Lizandra, de "Vale Tudo" e novelas da Tupi»«WS Merwin, prize-winning poet of nature, dies at 91»«Atriz Márcia Real morre em São Paulo aos 88 anos»«Mauritanie: décès de l'ancien président Mohamed Mahmoud ould Louly»«Morreu Dick Dale, o rei da surf guitar e de "Pulp Fiction"»«Falleció Víctor Genes»«João Carlos Marinho, autor de 'O Gênio do Crime', morre em SP»«Legendary Horror Director and SFX Artist John Carl Buechler Dies at 66»«Morre em Salvador a religiosa Makota Valdina»«مرگ بازیکن‌ سابق نساجی بر اثر سقوط سنگ در مازندران»«Domingos Oliveira morre no Rio»«Morre Airton Ravagniani, ex-São Paulo, Fla, Vasco, Grêmio e Sport - Notícias»«Morre o escritor Flavio Moreira da Costa»«Larry Cohen, Writer-Director of 'It's Alive' and 'Hell Up in Harlem,' Dies at 77»«Scott Walker, experimental singer-songwriter, dead at 76»«Joseph Pilato, Day of the Dead Star and Horror Favorite, Dies at 70»«Sheffield United set to pay tribute to legendary goalkeeper Ted Burgin who has died at 91»«Morre Rafael Henzel, sobrevivente de acidente aéreo da Chapecoense»«Morre Valery Bykovsky, um dos primeiros cosmonautas da União Soviética»«Agnès Varda, cineasta da Nouvelle Vague, morre aos 90 anos»«Agnès Varda, cineasta francesa, morre aos 90 anos»«Tania Mallet, James Bond Actress and Helen Mirren's Cousin, Dies at 77»e